Skip to main content
Log in

Investigation on the Biodegradability and Antibacterial Properties of Nanohybrid Suture Based on Silver Incorporated PGA-PLGA Nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyglycolic acid-poly lactic glycolic acid (PGA-PLGA) electrospun nanofibers containing silver nanoparticles have been produced and twisted into the nanofibrous yarn. The morphology of nanofibers and produced yarns, as well as the mechanical properties of the yarns, were investigated. Furthermore, in vitro antibacterial properties and in vitro degradation behavior of yarns containing various silver nanoparticles were studied. SEM images confirmed that the addition of the silver nanoparticles into the polymer solution increases the fiber diameters. The result of the mechanical test of the yarns alone and used in two different forms of the knots was measured and results showed that the strength of the yarns without the knot was significantly more than that of others. The biodegradability test showed that the mechanical properties and the weight of the yarns were quickly reduced after subjecting to in vitro condition. The result of the antibacterial test indicated that the nanofiber yarns containing %3 silver nanoparticles were the most appropriate sample with a considerably antibacterial activity against both gram-positive bacterium Staphylococcus aureus and gram-negative bacterium Escherichia Coli with inhibition zones of 8.1 and 9.5 mm, respectively; which demonstrated that silver nanoparticles retained their effectiveness after the electrospinning process. Therefore the nanofibrous yarns containing silver nanoparticles could be successfully produced by the electrospinning process with the proper antibacterial property as a candidate for the surgical sutures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Elek and P. Conen, Br. J. Exp. Pathol., 38, 573 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. V. Sergeev, E. Ivashchenko, N. Vagin, and N. Baglei, Fibre. Chem., 34, 433 (2002).

    Article  CAS  Google Scholar 

  3. M. Bide, A. Bachuwar, M. Phaneufand, T. Phaneuf, P. Aggarwal, K. Sousa, and F. LoGerfo, AATCC Review, 7 (2007).

  4. Johnson & Johnson, “ETHICON, INC., Receives FDA Clearance to Market VICRYL® Plus, First Ever Antibacterial Suture”, Available at http://www.evaluategroup.com/Universal/View.aspx?type=Story&id=35274 Accessed 8 May 2018.

  5. E. Kovtun, E. Plygan, and V. Sergeev, Fibre. Chem., 32, 441 (2000).

    CAS  Google Scholar 

  6. E. Kovtun, N. Baglei, and V. Sergeev, Fibre. Chem., 31, 374 (1999).

    Article  CAS  Google Scholar 

  7. J. Blaker, S. Nazhat, and A. Boccaccini, Biomaterials, 25, 1319 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. J. Venugopal and S. Ramakrishna, Appl. Biochem. Biotechnol., 125, 147 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  10. S. Ramakrishna, “An Introduction to Electrospinning and Nanofibers”, World Scientific, 42–48 (2005).

    Book  Google Scholar 

  11. E. Chong, T. Phan, I. Lim, Y. Zhang, B. Bay, S. Ramakrishna, and C. Lim, Acta Biomater, 3, 321 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res. B., 67, 675 (2003).

    Article  CAS  Google Scholar 

  13. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Control. Release., 92, 227 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. C. L. He, Z. M. Huang, X. J. Han, L. Liu, H. S. Zhang, and L. S. Chen, J. Macromol. Sci. Part B., 45, 515 (2006).

    Article  CAS  Google Scholar 

  15. M. Herrero-Herrero, J. A. Gómez-Tejedor, and A. Vallés-Lluch, Eur. Polym. J., 99, 445 (2018).

    Article  CAS  Google Scholar 

  16. A. Martins, R. Reis, and N. Neves, Int. Mater. Rev., 53, 257 (2008).

    Article  CAS  Google Scholar 

  17. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue. Eng., 11, 101 (2005).

    Article  PubMed  Google Scholar 

  18. E.-R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek in “Nanomaterials: Risks and Benefits”, p.247, Springer, 2009.

    Book  Google Scholar 

  19. H. Liu, K. K. Leonas, and Y. Zhao, J. Eng. Fiber. Fabr., 5, 10 (2010).

    CAS  Google Scholar 

  20. W. Hu, Z.-M. Huang, and X.-Y. Liu, Nanotechnol., 21, 315104 (2010).

    Article  CAS  Google Scholar 

  21. H. Maleki, A. Gharehaghaji, T. Toliyat, and P. Dijkstra, Biofabrication, 8, 035019 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. S. Padmakumar, J. Joseph, M. H. Neppalli, S. E. Mathew, S. V. Nair, S. A. Shankarappa, and D. Menon, ACS Appl. Mater. Interfaces, 8, 6925 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. F. Haghighat and S. A. H. Ravandi, Fiber. Polym., 15, 71 (2014).

    Article  CAS  Google Scholar 

  24. T. C. dos Santos, R. Hernández, N. Rescignano, L. Boff, F. H. Reginatto, C. M. O. Simões, A. M. de Campos, and C. Mijangos, Eur. Polym. J., 99, 456 (2018).

    Article  CAS  Google Scholar 

  25. F. N. Almajhdi, H. Fouad, K. A. Khalil, H. M. Awad, S. H. Mohamed, T. Elsarnagawy, A. M. Albarrag, F. F. Al-Jassir, and H. S. Abdo, J. Mater. Sci. Mater. Med., 25, 1045 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. I. Kohsari, Z. Shariatinia, and S. M. Pourmortazavi, Carbohydr. Polym., 140, 287 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. K. Varaprasad, Y. M. Mohan, S. Ravindra, N. N. Reddy, K. Vimala, K. Monika, B. Sreedhar, and K. M. Raju, J. Appl. Polym. Sci., 115, 1199 (2010).

    Article  CAS  Google Scholar 

  28. F. Dabirian and S. A. Hosseini, Fibers. Text. East. Eur., 17, 74 (2009).

    Google Scholar 

  29. A. Allafchian, S. Mirahmadi-Zare, S. Jalali, S. Hashemi, and M. Vahabi, J. Nanostructure. Chem., 6, 129 (2016).

    Article  CAS  Google Scholar 

  30. X. Xu, Q. Yang, J. Bai, T. Lu, Y. Li, and X. Jing, J. Nanosci. Nanotechnol., 8, 5066 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. R. M. Aghdam, S. Najarian, S. Shakhesi, S. Khanlari, K. Shaabani, and S. Sharifi, J. Appl. Polym. Sci., 124, 123 (2012).

    Article  CAS  Google Scholar 

  32. Z. Y. Wang, Y. M. Zhao, F. Wang, and J. Wang, J. Appl. Polym. Sci., 99, 244 (2006).

    Article  CAS  Google Scholar 

  33. X. Xu, Q. Yang, J. Bai, T. Lu, Y. Li, and X. Jing, J. Nanosci. Nanotechnol., 8, 5066 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. M. Hema, S. Selvasekarapandian, D. Arunkumar, A. Sakunthala, and H. Nithya, J. Non-Cryst. Solids., 355, 84 (2009).

    Article  CAS  Google Scholar 

  35. E. Pamula, P. Dobrzynski, M. Bero, and C. Paluszkiewicz, J. Mol. Struct., 744, 557 (2005).

    Article  CAS  Google Scholar 

  36. A. W. Shum and A. F. Mak, Polym. Degrad. Stabil., 81, 141 (2003).

    Article  CAS  Google Scholar 

  37. Y. You, B. M. Min, S. J. Lee, T. S. Lee, and W. H. Park, J. Appl. Polym. Sci., 95, 193 (2005).

    Article  CAS  Google Scholar 

  38. J. Chlopek, A. Morawska-Chochol, C. Paluszkiewicz, J. Jaworska, J. Kasperczyk, and P. Dobrzynski, Polym. Degrad. Stabil., 94, 1479 (2009).

    Article  CAS  Google Scholar 

  39. S. C. J. Loo, C. P. Ooi, and Y. C. F. Boey, Polym. Degrad. Stabil., 83, 259 (2004).

    Article  CAS  Google Scholar 

  40. Y. Gao, Y. Bach Truong, Y. Zhu, and I. Louis Kyratzis, J. Appl. Polym. Sci., 131 (2014).

  41. F. Zeighampour, F. Alihosseini, M. Morshed, and A. A. Rahimi, J. Appl. Polym. Sci., 135, 45794 (2018).

    Article  CAS  Google Scholar 

  42. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash, Nanotechnology, 18, 225103 (2007).

    Article  CAS  Google Scholar 

  43. D. P. Tamboli and D. S. Lee, J. Hazard. Mater., 260, 878 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhollahi, F., Hosseini, S.A., Alihosseini, F. et al. Investigation on the Biodegradability and Antibacterial Properties of Nanohybrid Suture Based on Silver Incorporated PGA-PLGA Nanofibers. Fibers Polym 19, 2056–2065 (2018). https://doi.org/10.1007/s12221-018-8316-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8316-7

Keywords

Navigation