Skip to main content
Log in

Mechanical properties and in vitro degradation of PLGA suture manufactured via electrospinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The current research discusses the efforts to achieve a Poly(lactide-co-glycolide)(PLGA) nanofiber yarn using two differently charged nozzles with potential application as surgery suture. First, electrospinning parameters such as solution concentration, applied voltage, feed rate were optimized to produce yarn with smooth nanofibers. In order to improve the properties of produced suture, heat setting setup was developed. Two heat setting techniques, including hot water and dry heat were applied, and the influence of the heat setting process on the mechanical properties of yarn was studied. The results showed that heat setting with boiling water was the best method. At first strength, E-modulus and extension of prepared suture were 36.6 MPa, 0.9 GPa and 68.8 % respectively. After improvement with heat setting, strength and E-modulus increased to 63.7 MPa, 2.7 GPa respectively and extension decreased to 29.7 %. Finally, in order to analyze knot performance, two types of surgical knot (square and surgeon) were used, and mechanical properties were investigated. The presence of knot lessens mechanical properties for each two type. Square knot showed better mechanical properties than surgeon’s knot. With square knot strength, E-modulus and extension were 62.1 MPa, 2.1 GPa, 28.6 %, respectively. In vitro study of nanofiber yarn degradation behavior showed that the mechanical properties were decreased. This could be due to greater surface area of nanofibers exposed to surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Ratner, “Biomaterials Science: An Introduction to Materials in Medicine”, pp.614–627, Academic Press, 2004

    Google Scholar 

  2. C. K. S. Pillai and C. P. Sharma, J. Biomater. Appl., 25, 291 (2010).

    Article  CAS  Google Scholar 

  3. F. Debbabi and S. B. Abdessalem, J. Appl. Sci., 11, 3276 (2011).

    Article  CAS  Google Scholar 

  4. J. Venugopal and S. Ramakrishna, Appl. Biochem. Biotech. 125, 147 (2005).

    Article  CAS  Google Scholar 

  5. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  6. S. Ramakrishna, “An Introduction to Electrospinning and Nanofibers”, pp.42–48, World Scientific Pub Co Inc., 2005

    Book  Google Scholar 

  7. A. Martins, R. L. Reis, and N. M. Neves, Int. Mater. Rev., 53, 257 (2008).

    Article  CAS  Google Scholar 

  8. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng., 11, 101 (2005).

    Article  Google Scholar 

  9. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, and C. T. Lim, Acta Biomater., 3, 321 (2007).

    Article  CAS  Google Scholar 

  10. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res.-A., 67, 675 (2003).

    Article  Google Scholar 

  11. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Control. Release., 92, 227 (2003).

    Article  CAS  Google Scholar 

  12. C. L. He, Z. M. Huang, X. J. Han, L. Liu, H. S. Zhang, and L. S. Chen, J. Macromol. Sci. Phys., 45, 515 (2006).

    Article  CAS  Google Scholar 

  13. E. R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek, Mater. Chem. Phys., 113, 296 (2009).

    Article  CAS  Google Scholar 

  14. S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, and S. Ramakrishna, Biomed. Mater., 1, 45 (2006).

    Article  Google Scholar 

  15. T. B. Bini, S. Gao, T. C. Tan, S. Wang, A. Lim, L. B. Hai, and S. Ramakrishna, Nanotechnology, 15, 1459 (2004).

    Article  CAS  Google Scholar 

  16. L. Soffer, X. Wang, X. Zhang, J. Kluge, L. Dorfmann, D. L. Kaplan, and G. Leisk, J. Biomat. Sci.-Polym. Ed., 19, 653 (2008).

    Article  CAS  Google Scholar 

  17. S. A. Sell, M. J. McClure, C. P. Barnes, D. C. Knapp, B. H. Walpoth, D. G. Simpson, and G. L. Bowlin, Biomed. Mater., 1, 72 (2006).

    Article  CAS  Google Scholar 

  18. A. Patanaik, R. D. Anandjiwala, R. S. Rengasamy, A. Ghosh, and H. Pal, Textile Progress., 39, 67 (2007).

    Article  Google Scholar 

  19. W. Hu, Z. M. Huang, and X. Y. Liu, Nanotechnology, 21, 315104 (2010).

    Article  Google Scholar 

  20. H. Liu, K. K. Leonas, and Y. Zhao, JEFF., 5, 10 (2010).

    CAS  Google Scholar 

  21. M. I. Sabir, X. Xu, and L. Li, J. Mater. Sci., 44, 5713 (2009).

    Article  CAS  Google Scholar 

  22. F. Dabirian and S. A. Hosseini, Fibres. Text. East. Eur., 17, 45 (2009).

    CAS  Google Scholar 

  23. V. B. Gupta and V. K. Kothari, “Manufactured Fiber Technology”, pp.188–202, Chapman & Hall, 1997

    Book  Google Scholar 

  24. S. A. Hosseini Ravandi, E. Hassanabadi, H. Tavanai, and R. A. Abuzade, J. Appl. Polym. Sci., 124, 5002 (2012).

    CAS  Google Scholar 

  25. R. Jalili, M. Morshed, and S. A. Hosseini Ravandi, J. Appl. Polym. Sci., 101, 4350 (2006).

    Article  CAS  Google Scholar 

  26. V. J. Chen and P. X. Ma, Biomaterials, 27, 3708 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Hosseini Ravandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighat, F., Ravandi, S.A.H. Mechanical properties and in vitro degradation of PLGA suture manufactured via electrospinning. Fibers Polym 15, 71–77 (2014). https://doi.org/10.1007/s12221-014-0071-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0071-9

Keywords

Navigation