Skip to main content
Log in

TEMPO-mediated oxidation of cellulose in carbonate buffer solution

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The reaction stability is a challenge in the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation of cellulose. Carbonate buffer solution (Na2CO3/NaHCO3) was used to study pH effects on stability of the oxidation reaction in this work. The structure and morphology of cellulose fibers were characterized by XRD and SEM techniques, respectively. It was found that the carboxyl content of oxidized cellulose was changed with different composition ratio of buffer solutions. The highest carboxyl content was obtained at the molar ratio of 7:3. The NaClO addition, as well as reaction temperature, affected the process of the oxidation reaction. The carboxylate content of the oxidized cellulose was increased as the temperature and NaClO consumption increased. However, both temperature and NaClO consumption have negative effect on yield. SEM results showed that the morphology of oxidized cellulose fibers was significantly changed at high reaction temperature. XRD showed that the oxidized cellulose fibers maintained the crystal structure of cellulose I. However, the crystallinity was decreased from 56.4 to 40.8 % with increasing oxidation temperature from 25 to 40 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Li, S. Zhao, Z. Zhang, H. Hu, and J. K. Kim, Fiber. Polym., 13, 1 (2012).

    Article  Google Scholar 

  2. D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, and A. Dorris, Angew. Chem. Int. Ed., 50, 5438 (2011).

    Article  CAS  Google Scholar 

  3. S. P. Mishra, A. S. Manent, B. Chabot, and C. Daneault, J. Wood Chem. Technol., 32, 137 (2012).

    Article  CAS  Google Scholar 

  4. T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).

    Article  CAS  Google Scholar 

  5. J. Nemoto, T. Soyama, T. Saito, and A. Isogai, Biomacromolecules, 13, 943 (2012).

    Article  CAS  Google Scholar 

  6. C. N. Wu, T. Saito, S. Fujisawa, H. Fukuzumi, and A. Isogai, Biomacromolecules, 13, 1927 (2012).

    Article  CAS  Google Scholar 

  7. G. Rodionova, T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen, H. Fukuzumi, and A. Isogai, Cellulose, 19, 705 (2012).

    Article  CAS  Google Scholar 

  8. D. O. Carlsson, G. Nyström, Q. Zhou, L. A. Berglund, L. Nyholm, and M. Strømme, J. Mater. Chem., 22, 19014 (2012).

    Article  CAS  Google Scholar 

  9. L. Melone, L. Altomare, I. Alfieri, A. Lorenzi, L. D Nardoa, and C. Punta, J. Photochem. Photobiol. A-Chem., 261, 53 (2013).

    Article  CAS  Google Scholar 

  10. J. Song, A. Tang, T. Liu, and J. Wang, Nanoscale, 5, 2482 (2013).

    Article  CAS  Google Scholar 

  11. H. L. Zhu, Z. G. Xiao, D. T. Liu, Y. Y. Li, N. J. Weadock, Z. Q. Fang, J. S. Huang, and L. B. Hu, Energy Environ. Sci., 6, 2105 (2013).

    Article  CAS  Google Scholar 

  12. H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma, and A. Isogai, Biomacromolecules, 14, 1160 (2013).

    Article  CAS  Google Scholar 

  13. D. O. Carlsson, K. Hua, J. Forsgren, and A. Mihranyan, Int. J. Pharm., 461, 74 (2014).

    Article  CAS  Google Scholar 

  14. K. Gao, Z. Shao, X. Wang, Y. Zhang, W. Wang, and F. Wang, Rsc Adv., 3, 15058 (2013).

    Article  CAS  Google Scholar 

  15. Q. Niu, K. Gao, and Z. Shao, Nanoscale, 6, 4083 (2014).

    Article  CAS  Google Scholar 

  16. G. Rodionova, Ø. Eriksen, and Ø. Gregersen, Cellulose, 19, 1115 (2012).

    Article  CAS  Google Scholar 

  17. M. Xu, H. Q. Dai, X. Sun, S. M. Wang, and W. B. Wu, Bioresources, 7, 1633 (2012).

    Google Scholar 

  18. B. Sun, C. J. Gu, J. H. Ma, and B. Liang, Cellulose, 12, 59 (2005).

    Article  CAS  Google Scholar 

  19. T. Saito, Y. Nishiyama, J. L. Putaux, M. Vignon, and A. Isogai, Biomacromolecules, 7, 1687 (2006).

    Article  CAS  Google Scholar 

  20. L. Li, S. Zhao, J. Zhang, Z. X. Zhang, H. Hu, Z. Xin, and J. K. Kim, Fiber. Polym., 14, 352 (2013).

    Article  CAS  Google Scholar 

  21. J. T. Hill-Cousins, J. Kuleshova, R. A. Green, P. R. Birkin, D. Pletcher, T. J. Underwood, S. G. Leach, and R. C. Brown, ChemSusChem, 5, 326 (2012).

    Article  CAS  Google Scholar 

  22. N. Tamura, M. Hirota, T. Saito, and A. Isogai, Carbohydr. Polym., 81, 592 (2010).

    Article  CAS  Google Scholar 

  23. N. Wang, E. Ding, and R. Cheng, Polymer, 48, 3486 (2007).

    Article  CAS  Google Scholar 

  24. M. Martinez-Sanz, A. Lopez-Rubio, and J. M. Lagaron, J. Appl. Polym. Sci., 128, 2666 (2013).

    Article  CAS  Google Scholar 

  25. J. F. Thaburet, N. Merbouh, M. Ibert, F. Marsais, and G. Queguiner, Carbohydr. Res., 330, 21 (2001).

    Article  CAS  Google Scholar 

  26. P. S. Chang and J. F. Robyt, J. Carbohydr. Chem., 15, 819 (1996).

    Article  CAS  Google Scholar 

  27. A. E. J. de Nooy, A. C. Besemer, and H. van Bekkum, Carbohydr. Res., 269, 89 (1995).

    Article  Google Scholar 

  28. P. L. Bragd, A. C. Besemer, and H. van Bekkum, Carbohydr. Res., 328, 355 (2000).

    Article  CAS  Google Scholar 

  29. P. Sedova, R. Buffa, S. Kettou, G. Huerta-Angeles, M. Hermannova, V. Leierova, D. Smejkalova, M. Moravcova, and V. Velebny, Carbohydr. Res., 371, 8 (2013).

    Article  CAS  Google Scholar 

  30. H. Y. Ma, C. Burger, B. S. Hsiao, and B. Chu, J. Membr. Sci., 454, 272 (2014).

    Article  CAS  Google Scholar 

  31. Z. Dang, J. Zhang, and A. J. Ragauskas, Carbohydr. Polym., 70, 310 (2007).

    Article  CAS  Google Scholar 

  32. E. Aracri, T. Vidal, and A. J. Ragauskas, Carbohydr. Polym., 84, 1384 (2011).

    Article  CAS  Google Scholar 

  33. H. Luo, G. Xiong, D. Hu, K. Ren, F. Yao, Y. Zhu, C. Gao, and Y. Wan, Mater. Chem. Phys., 143, 373 (2013).

    Article  CAS  Google Scholar 

  34. J. Milanovic, S. Schiehser, P. Milanovic, A. Potthast, and M. Kostic, Carbohydr. Polym., 98, 444 (2013).

    Article  CAS  Google Scholar 

  35. A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, E. Orblin, and P. Fardim, J. Colloid Interface Sci., 316, 360 (2007).

    Article  CAS  Google Scholar 

  36. D. Bondeson, A. Mathew, and K. Oksman, Cellulose, 13, 171 (2006).

    Article  CAS  Google Scholar 

  37. S. Elanthikkal, U. Gopalakrishnapanicker, S. Varghese, and J. T. Guthrie, Carbohydr. Polym., 80, 852 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Long, Z., Lv, Y. et al. TEMPO-mediated oxidation of cellulose in carbonate buffer solution. Fibers Polym 16, 319–325 (2015). https://doi.org/10.1007/s12221-015-0319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0319-z

Keywords

Navigation