Skip to main content
Log in

Study on die swell of cellulose diacetate spinning dope at the exit of regular triangular orifice

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Chemical fibers are typically spun with a spinneret, whose cross-sectional shape may be round, cross, trilobal, etc. On the contrary, cellulose diacetate (CDA) fibers used as cigarette tows are commonly spun with a regular triangular prism spinneret having a regular triangular cross-section because the cross-section of the spun cigarette tow is Y-shape owing to acetone solvent evaporation in the spinning column and the filter efficiency of the cigarette tow can reach the maximum value. However, previously CDA tows or fibers produced with such a regular triangular orifice were seldom reported. Many parameters influence the CDA tow spinning process with die swell being one of the most important factors. In this study, a model of a die swell was developed using rheological knowledge and second-type surface integrals. In order to confirm the validity of the model, the die swell of a CDA spinning dope at the exit of a regular triangular orifice was determined with a travelling microscope. Further, each parameter of die swell was studied. The apparent viscosity of the CDA spinning dopes was determined for different mass concentrations and temperatures with respect to shear rate and storage modulus and loss modulus with different mass concentrations and temperatures versus angular frequency were measured with a Physica MCR101 rheoviscometer. In addition, the flow rate was measured with a metering pump attached to the spinneret, and pressure drop was calculated from the above parameters. The results demonstrated that the die-swell ratio decreased when the dope temperatures were increased, but increasing trends were observed with dope concentrations and shearing rate. The experimental die-swell ratios were in good agreement with the calculated model results with less than ±6 % deviation. Therefore, this study can provide support for related CDA tows spinning studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Jiang, F. Wu, and J. Liang, “Textile Materials”, 2nd ed., pp.85–86, Chinese Textile & Apparel Press, Beijing, 1996.

    Google Scholar 

  2. Y. Sano, Dry. Technol., 9, 1336 (2001).

    Google Scholar 

  3. J. H. Hao, H. P. Dai, and P. C. Yang, J. Appl. Polym. Sci., 62, 129 (1996).

    Article  CAS  Google Scholar 

  4. W. K. Wee and M. R. Mackley, Chem. Eng. Sci., 53, 1131 (1998).

    Article  CAS  Google Scholar 

  5. D. Y. Jiao, Synth. Fiber., 53, 12 (1979).

    Google Scholar 

  6. R. I. Tanner, J. Polym. Sci., 8, 2067 (1970).

    CAS  Google Scholar 

  7. D. Rajagopalan, R. C. Armstrong, and R. A. Brown, J. Non-Newton. Fluid Mech., 46, 243 (1993).

    Article  CAS  Google Scholar 

  8. R. P. G. Rutgers and M. R. Mackley, J. Non-Newton. Fluid Mech., 98, 185 (2001).

    Article  CAS  Google Scholar 

  9. G. Barakos and E. Mitsouli, J. Non-Newton. Fluid Mech., 62, 55 (1996).

    Article  CAS  Google Scholar 

  10. T. Tran-Cong and N. Phan-Thien, Rheol. Acta, 27, 21 (1988).

    Article  CAS  Google Scholar 

  11. M. B. Bush, Polym. Eng. Sci., 33, 950 (1993).

    Article  CAS  Google Scholar 

  12. T. Shiojima and Y. J. Shimazaki, J. Non-Newton. Fluid Mech., 34, 269 (1990).

    Article  CAS  Google Scholar 

  13. X. L. Luo and R. I. Tanner, J. Non-Newton. Fluid Mech., 21, 179 (1986).

    Article  CAS  Google Scholar 

  14. R. Y. Chang and W. L. Yang, J. Non-Newton. Fluid Mech., 51, 1 (1994).

    Article  CAS  Google Scholar 

  15. N. Orbey and J. M. Dealy, Polym. Eng. Sci., 24, 511 (1984).

    Article  CAS  Google Scholar 

  16. C. David, Polym. Eng. Sci., 8, 609 (1979).

    Google Scholar 

  17. H. Kim, K. Chung, and J. R. Youn, Fiber. Polym., 1, 37 (2000).

    Article  CAS  Google Scholar 

  18. R. Keunings, M. J. Crochet, and M. M. Denn, Ind. Eng. Chem. Fundam., 22, 347 (1983).

    Article  CAS  Google Scholar 

  19. Z. P. Yang, J. H. Cao, and A. J. Yang, Synth. Fiber., 1, 35 (2004).

    Google Scholar 

  20. D. L. Mclntosh, Ph.D. Dissertation, Washington University, 1960.

    Google Scholar 

  21. W. P. Du, H. F. Chen, H. F. Xu, and D. Pan, Fiber. Polym., 10, 291 (2009).

    Article  Google Scholar 

  22. K. N. Indira, P. Jyotishkumar, and S. Thomas, Fiber. Polym., 15, 91 (2014).

    Article  CAS  Google Scholar 

  23. H. W. Kang, Y. Tabata, and Y. Ikada, Biomaterials, 20, 1339 (1999).

    Article  CAS  Google Scholar 

  24. P. Threepopnatkul, W. Teppinta, and N. Sombatsompop, Fiber. Polym., 12, 1007 (2011).

    Article  CAS  Google Scholar 

  25. J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd ed., p.154, Wiley Press, New Jersey, 1980.

    Google Scholar 

  26. R. Xiao, Q. F. Zhu, and L. X. Gu, Fiber. Polym., 11, 42 (2010).

    Article  CAS  Google Scholar 

  27. O. Yilmaz, H. Gunes, and K. Kirkkopru, Fiber. Polym., 15, 753 (2014).

    Article  Google Scholar 

  28. Y. Xu, Synth. Fiber., 22, 47 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuerong Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Xu, X., Zhang, L. et al. Study on die swell of cellulose diacetate spinning dope at the exit of regular triangular orifice. Fibers Polym 16, 105–112 (2015). https://doi.org/10.1007/s12221-015-0105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0105-y

Keywords

Navigation