Skip to main content
Log in

Optimization of a profile extrusion die for flow balance

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

One of the problems encountered in the extrusion of plastic profiles is unbalanced flow at the die exit. It causes deformation of the extrudates at ambient and precludes the material transition through remaining stages of production process (calibration, cooling sections etc). In this paper, geometric parameters of a profile extrusion die are optimized using several objective function definitions by Simulated Annealing-Kriging Meta-Algorithm. Objective functions are defined based on the uniformity of velocity distribution at the die exit. For this, Computational Fluid Dynamics (CFD) simulations are performed for N=70 die geometries. Appropriate geometric parameters (t and L) of the die are variables for the optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hurez and P. A. Tanguy, Polym. Eng. Sci., 36, 626 (1996).

    Article  CAS  Google Scholar 

  2. O. S. Carneiro, J. M. Nobrega, F. T. Pinho, and P. J. Oliveira, J. Mater. Process. Tech., 114, 75 (2001).

    Article  Google Scholar 

  3. S. Kaul and W. Michaeli, SPE ANTEC Tech. Papers, 1, 1 (2002).

    Google Scholar 

  4. J. M. Nobrega, O. S. Carneiro, P. J. Oliveira, and F. T. Pinho, Int. Polym. Proc., 18, 298 (2003).

    Article  CAS  Google Scholar 

  5. O. S. Carneiro, J. M. Nobrega, P. J. Oliveira, and F. T. Pinho, Int. Polym. Proc., 18, 307 (2003).

    Article  CAS  Google Scholar 

  6. J. M. Nobrega, O. S. Carneiro, F. T. Pinho, and P. J. Oliveira, Int. Polym. Proc., 19, 225 (2004).

    Article  CAS  Google Scholar 

  7. O. S. Carneiro and J. M. Nobrega, Plast. Rubber. Compos., 33, 400 (2004).

    Article  CAS  Google Scholar 

  8. Y. Sun and M. Gupta, SPE ANTEC Tech. Papers, 1, 3307 (2004).

    Google Scholar 

  9. A. Zolfaghari, A. H. Behravesh, E. Shakouri, and E. Soury, Polym. Eng. Sci., 49, 1793 (2009).

    Article  CAS  Google Scholar 

  10. A. Zolfaghari, A. H. Behravesh, E. Shakouri, and E. Soury, Polym. Eng. Sci., 50, 543 (2010).

    Article  CAS  Google Scholar 

  11. A. R. Shahreza, A. H. Behravesh, M. B. Jooybari, and E. Soury, Polym. Eng. Sci., 50, 2417 (2010).

    Article  Google Scholar 

  12. I. Szarvasy, J. Sienz, J. F. T. Pittman, and E. Hinton, Int. Polym. Proc., 15, 28 (2000).

    Article  CAS  Google Scholar 

  13. H. J. Ettinger, J. Sienz, J. F. T. Pittman, and A. Polynkin, Struct. Multidiscip. O., 28, 180 (2004).

    Article  Google Scholar 

  14. J. Švábík, L. Placek, and P. Sáha, Int. Polym. Proc., 14, 247 (1999).

    Article  Google Scholar 

  15. Y. Dai, H. Zheng, C. Zhou, and W. Yu, J. Macromol. Sci. Pure, 45, 1028 (2008).

    Article  CAS  Google Scholar 

  16. W. Michaeli, “Extrusion Dies for Plastics and Rubber: Design and Engineering Computations”, 3rd ed., pp.207–222, Hanser, Münich, 2003.

    Book  Google Scholar 

  17. B. L. Koziey, J. Vlachopoulos, J. Vlek, and J. Svabik, SPE ANTEC Tech. Papers, 1, 247 (1996).

    Google Scholar 

  18. P. Hurez and P. A. Tanguy, Polym. Eng. Sci., 33, 971 (1993).

    Article  CAS  Google Scholar 

  19. J. F. T. Pittman, P. I. Mech. Eng. E.-J. Pro., 225, 280 (2011).

    Article  Google Scholar 

  20. O. Yilmaz, H. Gunes, and K. Kirkkopru, “Design Optimization of an L-Shaped Extrusion Die”, Vol.9, p.147, ASME International Mechanical Engineering Congress & Exposition IMECE2009, Florida, ABD, 13–19 November, 2009.

    Google Scholar 

  21. M. D. McKay, W. J. Conover, and R. J. Beckman, Technometrics, 21, 239 (1979).

    Google Scholar 

  22. H. E. Cekli, “Enhancement and Smoothing Methods for Experimental Data: Application to PIV Measurements of a Laminar Separation Bubble”, Ph. D. Dissertation, Istanbul Tech. Uni., Istanbul, 2007.

    Google Scholar 

  23. PolyFlow, http://www.ansys.com.

  24. D. G. Krige, J. Chem. Metal. Mining Soc. South Africa, 52, 119 (1951).

    Google Scholar 

  25. G. Matheron, “Traite de Geostatistique Appliquee”, 1st ed., pp.334–350, Paris, Editions Technip, 1962.

    Google Scholar 

  26. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science, 220, 671 (1983).

    Article  CAS  Google Scholar 

  27. D. G. Baird and D. I. Collias, “Polymer Processing: Principles and Design”, 1st ed., pp.20–23, New York, Wiley-Interscience Publication, 1998.

    Google Scholar 

  28. R. B. Bird, R. C. Armstrong, and O. Hassager, “Dynamics of Polymeric Liquids”, 2nd ed., Vol. 1, p.105, New York, Wiley-Interscience publication, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, O., Gunes, H. & Kirkkopru, K. Optimization of a profile extrusion die for flow balance. Fibers Polym 15, 753–761 (2014). https://doi.org/10.1007/s12221-014-0753-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0753-3

Keywords

Navigation