Skip to main content
Log in

Dimensional, physical and thermal comfort properties of plain knitted fabrics made from modal viscose yarns having microfibers and conventional fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The dimensional, some physical and thermal comfort properties of the plain knitted fabrics having modal viscose microfibers in three different stitch lengths are investigated in comparison with the similar fabrics having conventional modal viscose fibers. The fabrics made from microfibers and conventional fibers exhibit different dimensional properties. The stitch density results and the dimensional constants calculated at the fully relaxed state reveal that the fabrics with microfibers tend to have lower shrinkage tendency than those with conventional fibers. The statistical results show that the fiber type (or fiber fineness) and the stitch length affect the some physical properties and all of the thermal comfort properties of the fabrics significantly. The bursting strength values of the fabrics with microfibers are observed to be slightly higher than those of the fabrics with conventional fibers. However, the difference between the bursting strength values of these fabrics is found to be statistically unimportant. The fabrics with microfibers reveal lower thickness and air permeability and, higher pilling tendency than those with conventional fibers. It is also observed from the thermal comfort results that the fabrics made from microfibers have higher thermal conductivity, thermal absorptivity and maximum heat flux values and, lower thermal resistance and thermal diffusivity values. Because of the higher thermal absorptivity and maximum heat flux values, the fabrics from microfibers provide cooler feeling when compared with those from conventional fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mukhopadhyay and G. Ramakrishnan, Text. Prog., 40, 1 (2008).

    Google Scholar 

  2. S. R. Matic-Leigh, National Textile Center Annual Report, 30, (1993).

  3. A. Karolia and N. Paradkar, J. Text. Assoc., 65, 31 (2004).

    CAS  Google Scholar 

  4. A. Karolia and N. Paradkar, Ind. Text. J., 116, 81 (2005).

    Google Scholar 

  5. J. Srinivasan, G. Ramakrishnan, S. Mukhopadhyay, and S. Manoharan, J. Text. Inst., 98, 31 (2007).

    Article  CAS  Google Scholar 

  6. G. Ramakrishnan, B. Dhurai, and S. Mukhopadhyay, Journal of Textile and Apparel Technology and Management, 6, 1 (2009).

    Google Scholar 

  7. J. Srinivasan and G. Ramakrishnan, Asian Text. J., 13, 78 (2004).

    Google Scholar 

  8. P. J. Doyle, J. Text. Inst., 44, 561 (1953).

    Article  Google Scholar 

  9. D. L. Munden, J. Text. Inst., 50, T448 (1959).

    Google Scholar 

  10. M. S. Burnip and M. N. Saha, J. Text. Inst., 64, 153 (1973).

    Article  Google Scholar 

  11. H. N. Yoon and A. Buckley, Text. Res. J., 54, 289 (1984).

    Article  CAS  Google Scholar 

  12. B. V. Holcombe and B. N. Hoschke, Text. Res. J., 53, 368 (1983).

    Article  Google Scholar 

  13. I. Frydrych, G. Dziworska, and J. Bilska, Fibres & Textiles in Eastern Europe, 39, 40 (2002).

    Google Scholar 

  14. A. Das, V. K. Kothari, and A. Sadachar, Fiber. Polym., 8, 116 (2007).

    Article  CAS  Google Scholar 

  15. M. Bona, “Textile Quality, Physical Methods of Product and Process Control”, Textilia, Italy, 1993.

  16. J. O. Ukponmwan, Text. Prog., 24, 1 (1993).

    Article  Google Scholar 

  17. P. J. Weedall and L. Goldie, J. Text. Inst., 92, 379 (2001).

    Google Scholar 

  18. L. Hes, M. D. Araujo, and V. V. Djulay, Text. Res. J., 66, 245 (1996).

    Article  CAS  Google Scholar 

  19. M. Yoneda and S. Kawabata, Journal of the Textile Machinery Society of Japan, 31, 79 (1985).

    Google Scholar 

  20. M. Yoneda and S. Kawabata, Journal of the Textile Machinery Society of Japan, 34, 1 (1988).

    Google Scholar 

  21. L. Hes, Int. J. Cloth. Sci. Technol., 11, 105 (1999).

    Article  Google Scholar 

  22. R. L. Barker, Int. J. Cloth. Sci. Technol., 14, 181 (2002).

    Article  Google Scholar 

  23. R. S. Rengasamy, B. R. Das, and Y. B. Patil, J. Text. Inst., 100, 507 (2009).

    Article  Google Scholar 

  24. M. J. Pac, M. A. Bueno, M. Renner, and S. E. Kasmi, Text. Res. J., 71, 806 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahu Demiroz Gun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gun, A.D. Dimensional, physical and thermal comfort properties of plain knitted fabrics made from modal viscose yarns having microfibers and conventional fibers. Fibers Polym 12, 258–267 (2011). https://doi.org/10.1007/s12221-011-0258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-011-0258-2

Keywords

Navigation