Skip to main content
Log in

Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Reducing energy consumption and minimizing environmental impacts have been significant factors in expanding the applicability of plant fiber-reinforced composites across a variety of industries. Plant fibers have major advantages over synthetic fibers, including biodegradability, light weight, low cost, non-abrasiveness, and acceptable mechanical properties. However, the inherent plant fiber properties, such as varying fiber quality, low mechanical properties, moisture content, poor impact strengths, a lack of integration with hydrophobic polymer matrices, and a natural tendency to agglomerate, have posed challenges to the development and application of plant fiber composites. Emphasis is being placed on overcoming this limitation to improve the performance of plant fiber composites and their applications. This study reviews plant fiber-reinforced composites, focusing on strategies and breakthroughs for improving plant fiber composite performance, such as fiber modification, fabrication, properties, biopolymers, and their composites with industrial applications like automotive, construction, ballistic, textiles, and others. Furthermore, Pearson rank correlation coefficients were used in this review to assess the relationship between the chemical composition of plant fibers with their physical and mechanical properties. If researchers study the behavior of plant fibers using correlation coefficients, it will be easier to combine plant fibers with a polymer matrix to develop a new sustainable material. Through this review study, researchers will learn more about the strategic value of these materials and how well they work in different real-world situations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

All data available in manuscript itself.

Abbreviations

Al2O3 :

Aluminum oxides

ATH:

Alumina Trihydrate

BFS:

Back face signature

CF:

Coir fibers

CM:

Compression molding

CMP:

Cast molding process

CNCs:

Cellulose nanocrystals

CNF:

Cellulose nanofibrils

DSC:

Differential Scanning Calorimetry

EM:

Extrusion molding

FDM:

Fused deposition model

FVF:

Fiber volume fraction

HDPE:

High density polyethylene

HIPS:

High impact polystyrene

IFSS:

Interfacial shear strength

ILSS:

Interlaminar shear strength

IM:

Injection molding

LDPE:

Low-density polyethylene

LOI:

Limiting Oxygen Index

MA:

Maleic anhydride

MAPP:

Polypropylene-maleic anhydride

MAS:

Multilayered armor system

MBAS:

Multilayered ballistic armor system

MgPP:

Maleic anhydride grafted polypropylene

NaOH:

Sodium hydroxide

NIJ:

National Institute of Justice

PALF:

Pineapple leaf fiber

PBS:

Poly (butylene succinate)

PE:

Polystyrene

PF:

Phenol formaldehyde,

PHAs:

Polyhydroxyalkanoates

PHB:

Poly (3-hydroxybutyrate)

PHBV:

Poly (3-hydroxybutyrate-co-3-hydroxy valerate)

PLA:

Poly (lactic) acid

PLLA:

Poly (L-lactic acid)

PP:

Polypropylene

PU:

Polyurethane

PVB:

Phenolic polyvinyl butyral-phenolic

PVC:

Polyvinyl chloride

RFI:

Resin film infusion

RI:

Resin infusion

ROM:

Rule of Mixture

RTM:

Resin transfer molding

SB:

Sugarcane bagasse

SMC:

Sheet molding compound

TPU:

Thermoplastic polyurethane

UP:

Unsaturated polyester

VARTM:

Vacuum assisted resin transfer molding

References

  1. Terekhina S, Egorov S, Tarasova T, Skornyakov I, Guillaumat L, Hattali ML (2022) In-nozzle impregnation of continuous textile flax fiber/polyamide 6 composite during FFF process. Compos Part A Appl Sci. https://doi.org/10.1016/j.compositesa.2021.106725

    Article  Google Scholar 

  2. Shah DU (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48(18):6083–6107. https://doi.org/10.1007/s10853-013-7458-7

    Article  CAS  Google Scholar 

  3. Thomason J, Jenkins P, Yang L (2016) Glass fibre strength—a review with relation to composite recycling. Fibers 4(2):18. https://doi.org/10.3390/fib4020018

    Article  Google Scholar 

  4. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35(3):371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  CAS  Google Scholar 

  5. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B Eng 101:31–45

    CAS  Google Scholar 

  6. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892

    CAS  Google Scholar 

  7. Li M, Pu Y, Thomas VM, Yoo CG, Ozcan S, Deng Y, Nelson K, Ragauskas AJ (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos B Eng. https://doi.org/10.1016/j.compositesb.2020.108254

    Article  Google Scholar 

  8. Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotechnol 11(12):1026–1030. https://doi.org/10.1038/nnano.2016.262

    Article  CAS  PubMed  Google Scholar 

  9. Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667

    CAS  PubMed  Google Scholar 

  10. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    CAS  Google Scholar 

  11. Zhang Z, Cai S, Li Y, Wang Z, Long Y, Yu T et al (2020) High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Compos Sci Technol 194:108151

    CAS  Google Scholar 

  12. Latif R, Wakeel S, Zaman Khan N, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z (2019) Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos 38(1):15–30. https://doi.org/10.1177/0731684418802022

    Article  CAS  Google Scholar 

  13. Kalia S, Kaith BS, Kaur I (eds) (2011) Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology. Springer, pp 97–120

    Google Scholar 

  14. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  15. Akter M, Uddin MH, Tania IS (2022) Biocomposites based on natural fibers and polymers: a review on properties and potential applications. J Reinf Plast Compos. https://doi.org/10.1177/073168442110706

    Article  Google Scholar 

  16. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

    Article  CAS  Google Scholar 

  17. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W

    Article  Google Scholar 

  18. Girijappa YGT, Rangappa SM, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6:226. https://doi.org/10.3389/fmats.2019.00226

    Article  Google Scholar 

  19. Sk S, Hiremath SS (2020) Natural Fiber Reinforced Composites in the Context of Biodegradability: a review. Book: reference module in materials science and materials engineering. Elsevier Ltd, pp 160–178. https://doi.org/10.1016/B978-0-12-803581-8.11418-3

    Chapter  Google Scholar 

  20. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

    Article  CAS  Google Scholar 

  21. Sahari J, Sapuan SM (2011) Natural fibre reinforced biodegradable polymer composites. Rev Adv Mater Sci 30(2):166–174

    Google Scholar 

  22. Gholampour A, Ozbakkaloglu T (2019) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55(3):829–892. https://doi.org/10.1007/s10853-019-03990-y

    Article  CAS  Google Scholar 

  23. Sinha AK, Bhattacharya S, Narang HK (2021) Abaca fibre reinforced polymer composites: a review. J Mater Sci 56(7):4569–4587. https://doi.org/10.1007/s10853-020-05572-9

    Article  Google Scholar 

  24. Saha A, Kumar S, Kumar A (2021) Influence of pineapple leaf particulate on mechanical, thermal and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite. J Polym Res 28:66. https://doi.org/10.1007/s10965-021-02435-y

    Article  CAS  Google Scholar 

  25. Soltan DG, Neves PD, Olvera A, Junior HS, Li VC (2017) Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior. Ind Crops Prod 103:1–12. https://doi.org/10.1016/j.indcrop.2017.03.016

    Article  CAS  Google Scholar 

  26. Majeed K, Jawaid M, Hassan A, Bakar AA, Khalil HPSA, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410. https://doi.org/10.1016/j.matdes.2012.10.044

    Article  CAS  Google Scholar 

  27. Zimniewska M, Przybylak MW, Mankowski J (2011) Cellulosic bast fibers, their structure and properties suitable for composite applications. Cellulose fibers bio- and nano-polymer composites green chemistry and technology. Springer, Germany

    Google Scholar 

  28. Coroller G, Lefeuvre A, Le Duigou A, Bourmaud A, Ausias G, Gaudry T, Baley C (2013) Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Compos A Appl Sci Manuf 51:62–70. https://doi.org/10.1016/j.compositesa.2013.03.018

    Article  CAS  Google Scholar 

  29. Paridah MT, Basher AB, Azry SS, Ahmed Z (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources 6(4):5260–5281

    Google Scholar 

  30. Abdellaoui H, Raji M, Essabir H, Bouhfid R, AeK Qaiss (2019) Mechanical behavior of carbon/natural fiber-based hybrid composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Newyork, pp 103–122. https://doi.org/10.1016/B978-0-08-102292-4.00006-0

    Chapter  Google Scholar 

  31. Balakrishnan P, John MJ, Pothen L, Sreekala MS, Thomas S (2016) Natural fibre and polymer matrix composites and their applications in aerospace engineering. Advanced composite materials for aerospace engineering. Woodhead Publishing, Sawston, pp 365–383. https://doi.org/10.1016/B978-0-08-100037-3.00012-2

    Chapter  Google Scholar 

  32. Asim M, Saba N, Jawaid M, Nasir M (2018) Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. Sustainable composites for aerospace applications. Elsevier Ltd., pp 253–268. https://doi.org/10.1016/B978-0-08-102131-6.00012-8

    Chapter  Google Scholar 

  33. Mochane MJ, Mokhena TC, Mokhothu TH, Mtibe A, Sadiku ER, Ray SS et al (2019) Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 13(2):159–198

    CAS  Google Scholar 

  34. Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295(11):975–989. https://doi.org/10.1002/mame.201000095

    Article  CAS  Google Scholar 

  35. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  CAS  Google Scholar 

  36. Komuraiah A, Ns K, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50(3):359–376. https://doi.org/10.1007/s11029-014-9422-2

    Article  CAS  Google Scholar 

  37. Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I hemp fibres J Mater Sci 41(8):2483–2496. https://doi.org/10.1007/s10853-006-5098-x

    Article  CAS  Google Scholar 

  38. Mwaikambo LY (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol 7(2):121

    Google Scholar 

  39. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. https://doi.org/10.1002/mame.201300008

    Article  CAS  Google Scholar 

  40. Yahya SAB, Yusof Y (2013) Comprehensive review on the utilization of PALF. Adv Mater Res 701:430–434. https://doi.org/10.4028/www.scientific.net/AMR.701.430

    Article  Google Scholar 

  41. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  42. More AP (2022) Flax fiber–based polymer composites: a review. Adv Compos Hybrid Mater 5:1–20. https://doi.org/10.1007/s42114-021-00246-9

    Article  CAS  Google Scholar 

  43. Vardhini KJV, Murugan R, Surjit R (2018) Effect of alkali and enzymatic treatments of banana fibre on properties of banana/polypropylene composites. J Ind Text 47(7):1849–1864. https://doi.org/10.1177/1528083717714479

    Article  CAS  Google Scholar 

  44. Venkateshwaran N, Perumal AE, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159. https://doi.org/10.1016/j.matdes.2012.12.001

    Article  CAS  Google Scholar 

  45. Jandas PJ, Mohanty S, Nayak SK (2013) Mechanical properties of surface-treated banana fiber/polylactic acid biocomposites: a comparative study of theoretical and experimental values. J Appl Polym Sci 127(5):4027–4038. https://doi.org/10.1002/app.37978

    Article  CAS  Google Scholar 

  46. Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos A: Appl Sci Manuf 37(3):423–429. https://doi.org/10.1016/j.compositesa.2005.05.045

    Article  CAS  Google Scholar 

  47. Debeli DK, Zhang Z, Jiao F, Guo J (2018) Diammonium phosphate-modified ramie fiber reinforced polylactic acid composite and its performances on interfacial, thermal, and mechanical properties. J Nat Fibers 16(3):342–356. https://doi.org/10.1080/15440478.2017.1423255

    Article  CAS  Google Scholar 

  48. Debeli DK, Guo J, Li Z, Zhu J, Li N (2017) Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite. Iran Polym J 26:341–354. https://doi.org/10.1007/s13726-017-0524-2

    Article  CAS  Google Scholar 

  49. Rahman MR, Huque MM, Islam MN, Hasan M (2009) Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos A: Appl Sci Manuf 40(4):511–517. https://doi.org/10.1016/j.compositesa.2009.01.013

    Article  CAS  Google Scholar 

  50. Bledzki AK, Mamun AA, Faruk O (2007) Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym Lett 1(11):755–762. https://doi.org/10.3144/expresspolymlett.2007.104

    Article  CAS  Google Scholar 

  51. Paglicawan MA, Kim BS, Basilia BA, Emolaga CS, Marasigan DD, Maglalang PEC (2014) Plasma-treated abaca fabric/unsaturated polyester composite fabricated by vacuum-assisted resin transfer molding. Int J Precis Eng Manuf-Green Tech 1:241–246. https://doi.org/10.1007/s40684-014-0030-3

    Article  Google Scholar 

  52. Sinha AK, Narang HK, Bhattacharya S (2020) Mechanical properties of hybrid polymer composites: a review. J Braz Soc Mech Sci Eng 42:431. https://doi.org/10.1007/s40430-020-02517-w

    Article  Google Scholar 

  53. Kodal M, Topuk ZD, Ozkoc G (2015) Dual effect of chemical modification and polymer precoating of flax fibers on the properties of short flax fiber/poly(lactic acid) composites. J Appl Polym Sci. https://doi.org/10.1002/app.42564

    Article  Google Scholar 

  54. Marais S, Gouanvé F, Bonnesoeur A, Grenet J, Epaillard FP, Morvan C, Métayer M (2005) Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos A: Appl Sci Manuf 36(7):975–986. https://doi.org/10.1016/j.compositesa.2004.11.008

    Article  CAS  Google Scholar 

  55. Li X, Tabil L, Panigrahi P, Crerar WJ (2004) Flax fiber-reinforced composites and the effect of chemical treatments on their properties. ASAE/CSAE North Central regional annual meeting. Manitoba, Canada, pp 1–10

    Google Scholar 

  56. de Weyenberg IV, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos A: Appl Sci Manuf 37(9):1368–1376. https://doi.org/10.1016/j.compositesa.2005.08.016

    Article  CAS  Google Scholar 

  57. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2(6):413–422. https://doi.org/10.3144/expresspolymlett.2008.50

    Article  CAS  Google Scholar 

  58. Nair KCM, Diwan SM, Thomas S (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J Appl Polym Sci 60(9):1483–1497. https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9%3c1483::AID-APP23%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  59. Premnath AA (2018) Impact of surface treatment on the mechanical properties of sisal and jute reinforced with epoxy resin natural fiber hybrid composites. J Nat Fibers 16(5):718–728. https://doi.org/10.1080/15440478.2018.1432002

    Article  CAS  Google Scholar 

  60. Chaitanya S, Singh I (2017) Sisal fiber-reinforced green composites: effect of ecofriendly fiber treatment. Polym Compos 39(12):4310–4321. https://doi.org/10.1002/pc.24511

    Article  CAS  Google Scholar 

  61. Li Z, Zhou X, Pei C (2011) Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. Int J Polym Sci 2011:1–7. https://doi.org/10.1155/2011/803428

    Article  CAS  Google Scholar 

  62. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37(23):5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9

    Article  CAS  Google Scholar 

  63. Ramesh M, Deepa C, Aswin US, Eashwar H, Mahadevan B, Murugan D (2017) Effect of alkalization on mechanical and moisture absorption properties of azadirachta indica (neem tree) fiber reinforced green composites. Trans Indian Inst Met 70:187–199. https://doi.org/10.1007/s12666-016-0874-z

    Article  CAS  Google Scholar 

  64. Alam AKMM, Mina MF, Beg MDH, Mamun AA, Bledzki AK, Shubhra QTH (2014) Thermo-mechanical and morphological properties of short natural fiber reinforced poly (lactic acid) biocomposite: effect of fiber treatment. Fibers Polym 15:1303–1309. https://doi.org/10.1007/s12221-014-1303-8

    Article  CAS  Google Scholar 

  65. Cisneros-López EO, González-López ME, Pérez-Fonseca AA, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2016) Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interfaces 24(1):35–53. https://doi.org/10.1080/09276440.2016.1184556

    Article  CAS  Google Scholar 

  66. Saw SK, Sarkhel G, Choudhury A (2012) Preparation and characterization of chemically modified Jute-Coir hybrid fiber reinforced epoxy novolac composites. J Appl Polym Sci 125(4):3038–3049. https://doi.org/10.1002/app.36610

    Article  CAS  Google Scholar 

  67. Faruk O, Birat KC, Sobh A, Tjong J, Sain M (2017) Natural fiber reinforced thermoplastic composites. Lightweight and sustainable materials for automotive applications. CRC Press, pp 1–38

    Google Scholar 

  68. Hong CK, Kim N, Kang SL, Nah C, Lee YS, Cho BH, Ahn JH (2008) Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plast Rubber Compos 37(7):325–330. https://doi.org/10.1179/174328908X314334

    Article  CAS  Google Scholar 

  69. Ray D, Sarkar BK, Rana AK, Bose NR (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos A: Appl Sci Manuf 32(1):119–127. https://doi.org/10.1016/S1359-835X(00)00101-9

    Article  CAS  Google Scholar 

  70. Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60(15):2857–2863. https://doi.org/10.1016/S0266-3538(00)00168-8

    Article  CAS  Google Scholar 

  71. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos B Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    Article  CAS  Google Scholar 

  72. Mwaikambo LY, Tucker N, Clark AJ (2007) Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromol Mater Eng 292(9):993–1000. https://doi.org/10.1002/mame.200700092

    Article  CAS  Google Scholar 

  73. Ragoubi M, Bienaimé D, Molina S, George B, Merlin A (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crops Prod 31(2):344–349. https://doi.org/10.1016/j.indcrop.2009.12.004

    Article  CAS  Google Scholar 

  74. Suardana NPG, Piao Y, Lim JK (2011) Mechanical properties of hemp fibers and hemp/pp composites: effects of chemical surface treatment. Mater Phys Mech 11(1):1–8

    CAS  Google Scholar 

  75. Tripathi P, Gupta VK, Dixit A, Mishra RK, Sharma S (2018) Development and characterization of low cost jute, bagasse and glass fiber reinforced advanced hybrid epoxy composites. AIMS Mater Sci 5(2):320–337. https://doi.org/10.3934/matersci.2018.2.320

    Article  CAS  Google Scholar 

  76. Li Y, Chen C, Xu J, Zhang Z, Yuan B, Huang X (2015) Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites. J Mater Sci 50:1117–1128. https://doi.org/10.1007/s10853-014-8668-3

    Article  CAS  Google Scholar 

  77. Vilay V, Mariatti M, Taib RM, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Compos Sci Technol 68(3–4):631–638. https://doi.org/10.1016/j.compscitech.2007.10.005

    Article  CAS  Google Scholar 

  78. De Iorio I, Leone C, Nele L, Tagliaferri V (1997) Plasma treatments of polymeric materials and Al alloy for adhesive bonding. J Mater Process Technol 68(2):179–183. https://doi.org/10.1016/S0924-0136(96)00025-8

    Article  Google Scholar 

  79. Cruz J, Fangueiro R (2016) Surface modification of natural fibers: a review. Procedia Eng 155:285–288. https://doi.org/10.1016/j.proeng.2016.08.030

    Article  CAS  Google Scholar 

  80. Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, Tavman I (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos B Eng 45(1):565–572. https://doi.org/10.1016/j.compositesb.2012.09.042

    Article  CAS  Google Scholar 

  81. Sarikanat M, Seki Y, Sever K, Bozaci E, Demir A, Ozdogan E (2016) The effect of argon and air plasma treatment of flax fiber on mechanical properties of reinforced polyester composite. J Ind Text 45(6):1252–1267. https://doi.org/10.1177/15280837145570

    Article  CAS  Google Scholar 

  82. Valášek P, Müller M, Šleger V (2017) Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources 12(3):5449–5461

    Google Scholar 

  83. Radoor S, Karayil J, Rangappa SM, Siengchin S, Parameswaranpillai J (2020) A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix. Express Polym Lett 14(4):309–335. https://doi.org/10.3144/expresspolymlett.2020.27

    Article  CAS  Google Scholar 

  84. Bastos DC, Santos AE, da Fonseca MD, Simão RA (2013) Inducing surface hydrophobization on cornstarch film by SF6 and HMDSO plasma treatment. Carbohydr Polym 91(2):675–681. https://doi.org/10.1016/j.carbpol.2012.08.031

    Article  CAS  PubMed  Google Scholar 

  85. Gholshan Tafti HR, Valipour P, Mirjalili M (2018) Effects of corona treatment on morphology and properties of carbon based fillers/epoxy nanocomposites. Polym Compos 39(S4):E2298–E2304. https://doi.org/10.1002/pc.24622

    Article  CAS  Google Scholar 

  86. Zheng Z, Wang X, Huang X, Shi M, Zhou G (2006) Chemical modification combined with corona treatment of UHMWPE fibers and their adhesion to vinylester resin. J Adhes Sci Technol 20(10):1047–1059. https://doi.org/10.1163/156856106777890626

    Article  CAS  Google Scholar 

  87. Amirou S, Zerizer A, Haddadou I, Merlin A (2013) Effects of corona discharge treatment on the mechanical properties of biocomposites from polylactic acid and Algerian date palm fibres. Sci Res Essays 8(21):946–952. https://doi.org/10.5897/SRE2013.5507

    Article  Google Scholar 

  88. Mesquita RGDA, César AADS, Mendes RF, Mendes LM, Marconcini JM, Glenn G, Tonoli GHD (2017) Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse. J Polym Environ 25(3):800–811. https://doi.org/10.1007/s10924-016-0864-6

    Article  CAS  Google Scholar 

  89. Xia X, Liu W, Zhou L, Hua Z, Liu H, He S (2016) Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iran Polym J 25(1):25–35. https://doi.org/10.1007/s13726-015-0395-3

    Article  CAS  Google Scholar 

  90. Wang X, Petrů M, Yu H (2019) The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr Build Mater 208:220–227. https://doi.org/10.1016/j.conbuildmat.2019.03.001

    Article  Google Scholar 

  91. Halip JA, Hua LS, Ashaari Z, Tahir PM, Chen LW, Uyup MKA (2019) Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. Mechanical and physical testing of biocomposites fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 141–156

    Google Scholar 

  92. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234. https://doi.org/10.1002/app.10460

    Article  CAS  Google Scholar 

  93. Haque MM, Hasan M, Islam MS, Ali ME (2009) Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour Technol 100(20):4903–4906. https://doi.org/10.1016/j.biortech.2009.04.072

    Article  CAS  PubMed  Google Scholar 

  94. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polym Eng Sci 49(7):1253–1272. https://doi.org/10.1002/pen.21328

    Article  CAS  Google Scholar 

  95. Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80(7):1013–1020. https://doi.org/10.1002/app.1184

    Article  CAS  Google Scholar 

  96. Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508(1–2):247–252. https://doi.org/10.1016/j.msea.2009.01.043

    Article  CAS  Google Scholar 

  97. Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol 61(9):1303–1310. https://doi.org/10.1016/S0266-3538(01)00021-5

    Article  CAS  Google Scholar 

  98. Arifuzzaman Khan GM, Alam Shams MS, Kabir MR, Gafur MA, Terano M, Alam MS (2013) Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci 128(2):1020–1029. https://doi.org/10.1002/app.38197

    Article  CAS  Google Scholar 

  99. Chollakup R, Smitthipong W, Kongtud W, Tantatherdtam R (2013) Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): effect of fiber surface treatment and fiber content. J Adhes Sci Technol 27(12):1290–1300. https://doi.org/10.1080/01694243.2012.694275

    Article  CAS  Google Scholar 

  100. Rahman MM, Khan MA (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos Sci Technol 67(11–12):2369–2376. https://doi.org/10.1016/j.compscitech.2007.01.009

    Article  CAS  Google Scholar 

  101. Siakeng R, Jawaid M, Ariffin H, Salit MS (2018) Effects of surface treatments on tensile thermal and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid. J Bionic Eng 15(6):1035–1046. https://doi.org/10.1007/s42235-018-0091-z

    Article  Google Scholar 

  102. Wang X, Chang L, Shi X, Wang L (2019) Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials (Basel). https://doi.org/10.3390/ma12091386

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2016) Hydrophobic treatment of natural fibers and their composites—A review. J Ind Text 47(8):2153–2183. https://doi.org/10.1177/1528083716654468

    Article  CAS  Google Scholar 

  104. Bodur MS, Bakkal M, Sonmez HE (2016) The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J Compos Mater 50(27):3817–3830. https://doi.org/10.1177/0021998315626256

    Article  CAS  Google Scholar 

  105. Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63(6):861–869. https://doi.org/10.1016/S0266-3538(02)00270-1

    Article  CAS  Google Scholar 

  106. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos A Appl Sci Manuf 36(8):1110–1118. https://doi.org/10.1016/j.compositesa.2005.01.004

    Article  CAS  Google Scholar 

  107. Zafeiropoulos NE, Baillie CA (2007) A study of the effect of surface treatments on the tensile strength of flax fibres: Part II. Application of weibull statistics. Compos A: Appl Sci Manuf 38(2):629–638. https://doi.org/10.1016/j.compositesa.2006.02.005

    Article  CAS  Google Scholar 

  108. Josepha PV, Josepha K, Thomasb S, Pillaic CKS, Prasadc VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos A: Appl Sci Manuf 34(3):253–266. https://doi.org/10.1016/S1359-835X(02)00185-9

    Article  CAS  Google Scholar 

  109. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  110. Fuqua MA, Ulven CA (2008) Characterization of polypropylene/corn fiber composites with maleic anhydride grafted polypropylene. J Biobased Mater Bioenergy 2(3):258–263. https://doi.org/10.1166/jbmb.2008.405

    Article  Google Scholar 

  111. Nair KCM, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61(16):2519–2529. https://doi.org/10.1016/S0266-3538(01)00170-1

    Article  Google Scholar 

  112. Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2018) Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polym Compos 40(5):2000–2011. https://doi.org/10.1002/pc.24978

    Article  CAS  Google Scholar 

  113. Khan GMA, Terano M, Gafur MA, Alam MS (2016) Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid) composites. J King Saud Univ Eng Sci 28(1):69–74

    Google Scholar 

  114. Mukesh GSS (2019) Effect of chemical modification of fiber surface on natural fiber composites: a review. Mater Today: Proc 18(7):3428–3434. https://doi.org/10.1016/j.matpr.2019.07.270

    Article  CAS  Google Scholar 

  115. Arrakhiz FZ, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des 35:318–322. https://doi.org/10.1016/j.matdes.2011.09.023

    Article  CAS  Google Scholar 

  116. Baiardo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83(1):38–45. https://doi.org/10.1002/app.2229

    Article  CAS  Google Scholar 

  117. Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C (2008) Highly dispersed silica-supported copper nanoparticles prepared by precipitation−gel method: a simple but efficient and stable catalyst for glycerol hydrogenolysis. Chem Mater 20(15):5090–5099

    CAS  Google Scholar 

  118. Castellanos LJ, Blanco-Tirado C, Hinestroza JP, Combariza MY (2012) In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19(6):1933–1943

    CAS  Google Scholar 

  119. Chowdhury MNK, Beg MDH, Khan MR, Mina MF (2013) Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose 20(3):1477–1490. https://doi.org/10.1007/s10570-013-9921-7

    Article  CAS  Google Scholar 

  120. Chowdhury MN, Beg MD, Khan MR, Mina MF, Ismail AF (2015) Copper nanoparticle in cationized palm oil fibres: physico-chemical investigation. Colloid Polym Sci 293(3):777–786

    CAS  Google Scholar 

  121. Chowdhury MN, Beg MD, Khan MR, Mina MF (2013) Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres. Mater Lett 98:26–29. https://doi.org/10.1016/j.matlet.2013.02.024

    Article  CAS  Google Scholar 

  122. Chowdhury MN, Mina MF, Beg MD, Khan MR (2013) Cu nanoparticles for improving the mechanical performances of oil palm empty fruit bunch fibers as analyzed by Weibull model. Polym Bull 70(11):3103–3113

    CAS  Google Scholar 

  123. Haque ME, Khan MW, Hasan MM, Chowdhury MN (2022) Synthesis, characterization and performance of nanocopper impregnated sawdust-reinforced nanocomposite. Polym Bull 27:1–24. https://doi.org/10.1007/s00289-022-04496-5

    Article  CAS  Google Scholar 

  124. Devaraju A, Sivasamy P (2018) Comparative analysis of mechanical characteristics of sisal fibre composite with and without nano particles. Mater Today: Proc 5(6):14362–14366. https://doi.org/10.1016/j.matpr.2018.03.020

    Article  CAS  Google Scholar 

  125. Tania IS, Ali M, Akter M (2022) Fabrication, characterization, and utilization of ZnO nanoparticles for stain release, bacterial resistance, and UV protection on cotton fabric. J Eng Fibers Fabr 17:1–11. https://doi.org/10.1177/155892502211363

    Article  Google Scholar 

  126. Preda N, Costas A, Sbardella F, Seghini MC, Touchard F, Chocinski-Arnault L, Tirillò J, Sarasini F (2022) Hierarchical flax fibers by zno electroless deposition: tailoring the natural fibers/synthetic matrix interphase in composites. Nanomaterials (Basel) 12(16):2765. https://doi.org/10.3390/nano12162765

    Article  CAS  PubMed  Google Scholar 

  127. Ajith A, Xian G, Li H, Sherief Z, Thomas S (2015) Surface grafting of flax fibres with hydrous zirconia nanoparticles and the effects on the tensile and bonding properties. J Compos Mater 50(5):627–635. https://doi.org/10.1177/0021998315580450

    Article  CAS  Google Scholar 

  128. Campilho RDSG (ed) (2015) Natural Fiber Composites, 1st edn. CRC Press, Boca Raton, p 368. https://doi.org/10.1201/b19062

    Book  Google Scholar 

  129. Mahmud S, Hasan KMF, Jahid MA, Mohiuddin K, Zhang R, Zhu J (2021) Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci 56(12):7231–7264. https://doi.org/10.1007/s10853-021-05774-9

    Article  CAS  Google Scholar 

  130. Clarinval AMHJ (2005) Classification of biodegradable polymers. Biodegradable polymers for industrial applications. Woodhead Publishing Limited, Amsterdam

    Google Scholar 

  131. Ashby MF (2012) Materials and the environment: eco-informed material choice. Elsevier, Amsterdam

    Google Scholar 

  132. Dave HK, Rajpurohit SR, Patadiya NH, Dave SJ, Sharma KS, Thambad SS, Srinivasn VP, Sheth KV (2019) Compressive strength of PLA based scaffolds: effect of layer height, infill density and print speed. Int J Mod Manuf Technol 11(1):21–27

    Google Scholar 

  133. Ouarhim W, Zari N, Bouhfid R, El Kacem Qaiss A (2019) Mechanical performance of natural fibers–based thermosetting composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 43–60

    Google Scholar 

  134. Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics. Int J Eng Res Innov 3(1):59–64

    Google Scholar 

  135. Rusmirović JD, Kovačević TM, Brzić SJ, Marinković AD (2020) Cross-linkable bio and mineral fillers for reactive polymer composites: processing and characterization. In: Gutiérrez TJ (ed) Reactive and functional polymers, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-45135-6_6

    Chapter  Google Scholar 

  136. Monteiro SN, Calado V, Margem FM, Rodriguez RJ (2012) Thermogravimetric stability behavior of less common lignocellulosic fibers-a review. J Mater Res Technol 1(3):189–199. https://doi.org/10.1016/S2238-7854(12)70032-7

    Article  CAS  Google Scholar 

  137. Pereira PHF, Rosa MdF, Cioffi MOH, Benini KCCdC, Milanese AC, Voorwald HJC, Mulinari DR (2015) Vegetal fibers in polymeric composites: a review. Polimeros 25(1):9–22. https://doi.org/10.1590/0104-1428.1722

    Article  CAS  Google Scholar 

  138. Tanasă F, Zănoagă M, Teacă CA, Nechifor M, Shahzad A (2019) Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—A review I methods of modification. Polym Compos 41(1):5–31. https://doi.org/10.1002/pc.25354

    Article  CAS  Google Scholar 

  139. Gallos A, Paës G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Adv 7(55):34638–34654. https://doi.org/10.1039/C7RA05240E

    Article  CAS  Google Scholar 

  140. Shah DU, Schubel PJ, Clifford MJ, Licence P (2014) Mechanical property characterization of aligned plant yarn reinforced thermoset matrix composites manufactured via vacuum infusion. Polym Plast Technol Eng 53(3):239–253. https://doi.org/10.1080/03602559.2013.843710

    Article  CAS  Google Scholar 

  141. Åström BT (2017) Manufacturing of polymer composites. Routledge, London

    Google Scholar 

  142. Akovali G (2001) Handbook of composite fabrication. Rapra Publishing, Shorpshire, UK

    Google Scholar 

  143. Hollaway L (1994) Handbook of polymer composites for engineers. Woodhead Publishing Limited, Amsterdam, The Netherlands

    Google Scholar 

  144. Crutchlow R (2004) Changing from open to closed moulding. Reinf Plast 48(8):40–41. https://doi.org/10.1016/S0034-3617(04)00405-9

    Article  Google Scholar 

  145. Matthews FL (2003) Composites manufacturing: materials, product and process engineering. Mazumdar SK CRC Press, 2000 NW Corporate Blvd., Boca Raton, FL 33431, USA. 2002. 392pp. Illustrated.£ 69.99. ISBN 0–8493–0585–3. The Aeronautical Journal, 107(1071): 274–274

  146. Middleton B (2015) Composites: Manufacture, and Application. In: Design and manufacture of plastic components for multifunctionality: structural composites, injection molding, and 3D printing, pp.53–101

  147. Bilisik K, Akter M (2021) Graphene nanocomposites: a review on processes, properties, and applications. J Ind Text 51(3_suppl):3718–3766. https://doi.org/10.1177/15280837211024252

    Article  CAS  Google Scholar 

  148. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A: Appl Sci Manuf 43(8):1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  149. Sapuan SM, Tamrin KF, Nukman Y, El-Shekeil YA. Hussin MSA, Aziz SNA (2016). Natural fiber-reinforced composites: Types, development, manufacturing process, and measurement. In: Comprehensive materials finishing, 203

  150. Tatara RA (2017) Compression molding. In: Kutz M (ed) Applied plastics engineering handbook, 2nd edn. William Andrew Publishing, pp 291–320

    Google Scholar 

  151. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  CAS  Google Scholar 

  152. Mazumdar S (2001) Composites manufacturing: materials, product, and process engineering. CrC press

    Google Scholar 

  153. Asim M, Jawaid M, Saba N, Nasir M, Sultan MTH (2017) Processing of hybrid polymer composites—a review. Hybrid polymer composite materials. Woodhead publishing, pp 1–22. https://doi.org/10.1016/B978-0-08-100789-1.00001-0

    Chapter  Google Scholar 

  154. Sathishkumar GK, Ibrahim M, Mohamed Akheel M, Rajkumar G, Gopinath B, Karpagam R, Karthik P, Martin Charles M et al (2022) Synthesis and mechanical properties of natural fiber reinforced epoxy/polyester/polypropylene composites: a review. J Nat Fibers 19(10):3718–3741. https://doi.org/10.1080/15440478.2020.1848723

    Article  CAS  Google Scholar 

  155. Kim SJ, Moon JB, Kim GH, Ha CS (2008) Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym Test 27(7):801–806. https://doi.org/10.1016/j.polymertesting.2008.06.002

    Article  CAS  Google Scholar 

  156. Meyer N, Schöttl L, Bretz L, Hrymak AN, Kärger L (2020) Direct bundle simulation approach for the compression molding process of sheet molding compound. Compos A: Appl Sci Manuf 132:105809. https://doi.org/10.1016/j.compositesa.2020.105809

    Article  CAS  Google Scholar 

  157. Ebnesajjad S (2003) Injection Molding. In: Ebnesajjad S (ed) Melt processible fluoroplastics. William Andrew Publishing, Norwich, NY, pp 151–193

    Google Scholar 

  158. Rabbi MS, Islam T, Islam GM (2021) Injection-molded natural fiber-reinforced polymer composites–a review. Int J Mech Mater Eng 16(1):1–21. https://doi.org/10.1186/s40712-021-00139-1

    Article  Google Scholar 

  159. Das PP, Chaudhary V, Ahmad F, Manral A, Gupta S, Gupta P (2022) Acoustic performance of natural fiber reinforced polymer composites: influencing factors, future scope, challenges, and applications. Polym Compos 43(3):1221–1237. https://doi.org/10.1002/pc.26455

    Article  CAS  Google Scholar 

  160. Evens T, Malek O, Castagne S, Seveno D, Van Bael A (2020) A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf Lett 24:29–32. https://doi.org/10.1016/j.mfglet.2020.03.009

    Article  Google Scholar 

  161. Wang J, Mao Q, Chen J (2013) Preparation of polypropylene single-polymer composites by injection molding. J Appl Polym Sci 130(3):2176–2183. https://doi.org/10.1002/app.39411

    Article  CAS  Google Scholar 

  162. Murray JJ, Robert C, Gleich K, McCarthy ED, Brádaigh CMÓ (2020) Manufacturing of unidirectional stitched glass fabric reinforced polyamide 6 by thermoplastic resin transfer moulding. Mater Des 189:108512. https://doi.org/10.1016/j.matdes.2020.108512

    Article  CAS  Google Scholar 

  163. Joshi SC (2012) The pultrusion process for polymer matrix composites. Manufacturing techniques for polymer matrix composites (PMCs). Woodhead Publishing, pp 381–413. https://doi.org/10.1533/9780857096258.3.381

    Chapter  Google Scholar 

  164. Sandberg M, Yuksel O, Comminal RB, Sonne MR, Jabbari M, Larsen M, Salling FB, Baran I et al (2020) Numerical modeling of the mechanics of pultrusion. Mechanics of materials in modern manufacturing methods and processing techniques. Elsevier, pp 173–195

    Google Scholar 

  165. Meyer R (2012) Handbook of pultrusion technology. Springer

    Google Scholar 

  166. Gopanna A, Rajan KP, Thomas SP, Chavali M (2019) Polyethylene and polypropylene matrix composites for biomedical applications. Materials for biomedical engineering. Elsevier, pp 175–216. https://doi.org/10.1016/B978-0-12-816874-5.00006-2

    Chapter  Google Scholar 

  167. Shubhra QT, Alam AM, Quaiyyum MA (2013) Mechanical properties of polypropylene composites: a review. J Thermoplast Compos Mater 26(3):362–391. https://doi.org/10.1177/0892705711428659

    Article  CAS  Google Scholar 

  168. Manral A, Bajpai PK, Ahmad F, Joshi R (2021) Processing of sustainable thermoplastic based biocomposites: a comprehensive review on performance enhancement. J Clean Prod 316:128068. https://doi.org/10.1016/j.jclepro.2021.128068

    Article  CAS  Google Scholar 

  169. Çağrı UZAY, GEREN N (2020) Advanced technologies for fiber reinforced polymer composite manufacturing. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi 23(4):245–257. https://doi.org/10.17780/ksujes.809417

    Article  Google Scholar 

  170. Malik K, Ahmad F, Gunister E (2021) A review on the Kenaf fiber reinforced thermoset composites. Appl Compos Mater 28(2):491–528. https://doi.org/10.1007/s10443-021-09871-5

    Article  CAS  Google Scholar 

  171. Borba PM, Tedesco A, Lenz DM (2014) Effect of reinforcement nanoparticles addition on mechanical properties of SBS/Curauá fiber composites. Mater Res 17:412–419. https://doi.org/10.1590/S1516-14392013005000203

    Article  Google Scholar 

  172. Geethamma VG, Joseph R, Thomas S (1995) Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J Appl Polym Sci 55(4):583–594

    CAS  Google Scholar 

  173. Seong DG, Kang C, Pak SY, Kim CH, Song YS (2019) Influence of fiber length and its distribution in three phase poly(propylene) composites. Compos B Eng 168:218–225. https://doi.org/10.1016/j.compositesb.2018.12.086

    Article  CAS  Google Scholar 

  174. Diyana ZN, Jumaidin R, Selamat MZ, Ghazali I, Julmohammad N, Huda N, Ilyas RA (2021) Physical properties of thermoplastic starch derived from natural resources and its blends: a review. Polymers 13(9):1396. https://doi.org/10.3390/polym13091396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Supian ABM, Sapuan SM, Jawaid M, Zuhri MYM, Ilyas RA, Syamsir A (2022) Crashworthiness response of filament wound kenaf/glass fibre-reinforced epoxy composite tubes with influence of stacking sequence under intermediate-velocity impact load. Fibers Polym 23(1):222–233. https://doi.org/10.1007/s12221-021-0169-9

    Article  CAS  Google Scholar 

  176. Suriani MJ, Ilyas RA, Zuhri MYM, Khalina A, Sultan MTH, Sapuan SM, Ruzaidi CM, Wan FN et al (2021) Critical review of natural fiber reinforced hybrid composites: processing, properties, applications and cost. Polymers 13(20):3514. https://doi.org/10.3390/polym13203514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ramnath BV, Kokan SJ, Raja RN, Sathyanarayanan R, Elanchezhian C, Prasad AR, Manickavasagam VM (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366. https://doi.org/10.1016/j.matdes.2013.03.102

    Article  CAS  Google Scholar 

  178. Gupta MK, Srivastava RK (2016) Properties of sisal fibre reinforced epoxy composite. Indian J Fibre Text Res 41(3):235

  179. Paul V, Kanny K, Redhi GG (2013) Formulation of a novel bio-resin from banana sap. Ind Crops Prod 43:496–505. https://doi.org/10.1016/j.indcrop.2012.07.064

    Article  CAS  Google Scholar 

  180. Takagi H, Ichihara Y (2004) Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME INT J A-SOLID 47(4):551–555. https://doi.org/10.1299/jsmea.47.551

    Article  Google Scholar 

  181. Djafar Z, Renreng I, Jannah M (2021) Tensile and bending strength analysis of ramie fiber and woven ramie reinforced epoxy composite. J Nat Fibers 18(12):2315–2326. https://doi.org/10.1080/15440478.2020.1726242

    Article  CAS  Google Scholar 

  182. Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos A: Appl Sci Manuf 63:76–84. https://doi.org/10.1016/j.compositesa.2014.04.003

    Article  CAS  Google Scholar 

  183. Akhtar MN, Sulong AB, Radzi MF, Ismail NF, Raza MR, Muhamad N, Khan MA (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat Sci: Mater Int 26(6):657–664. https://doi.org/10.1016/j.pnsc.2016.12.004

    Article  CAS  Google Scholar 

  184. Gupta MK, Srivastava RK (2015) Properties of sisal fibre reinforced epoxy composite. Int j fiber text res 5(3):30–38

    Google Scholar 

  185. Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol 66(7–8):895–906. https://doi.org/10.1016/j.compscitech.2005.07.040

    Article  CAS  Google Scholar 

  186. Ranganathan N, Oksman K, Nayak SK, Sain M (2015) Regenerated cellulose fibers as impact modifier in long jute fiber reinforced polypropylene composites: effect on mechanical properties, morphology, and fiber breakage. J Appl Polym Sci. https://doi.org/10.1002/app.41301

    Article  Google Scholar 

  187. Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A: Appl Sci Manuf 38(6):1569–1580. https://doi.org/10.1016/j.compositesa.2007.01.001

    Article  CAS  Google Scholar 

  188. Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos A Appl Sci Manuf 38(8):1811–1820. https://doi.org/10.1016/j.compositesa.2007.04.010

    Article  CAS  Google Scholar 

  189. Rawi NFM, Jayaraman K, Bhattacharyya D (2013) A performance study on composites made from bamboo fabric and poly (lactic acid). J Reinf Plast Compos 32(20):1513–1525. https://doi.org/10.1177/0731684413498296

    Article  CAS  Google Scholar 

  190. Chandekar H, Chaudhari V, Waigaonkar S (2020) A review of jute fiber reinforced polymer composites. Mater Today: Proc 26:2079–2082. https://doi.org/10.1016/j.matpr.2020.02.449

    Article  CAS  Google Scholar 

  191. Sharma NK, Kumar V (2013) Studies on properties of banana fiber reinforced green composite. J Reinf Plast Compos 32(8):525–532. https://doi.org/10.1177/0731684412473005

    Article  CAS  Google Scholar 

  192. Joseph S, Koshy P, Thomas S (2005) The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Compos Interfaces 12(6):581–600. https://doi.org/10.1163/1568554054915183

    Article  CAS  Google Scholar 

  193. Biswas S, Kindo S, Patnaik A (2011) Effect of fiber length on mechanical behavior of coir fiber reinforced epoxy composites. Fibers Polym 12(1):73–78. https://doi.org/10.1007/s12221-011-0073-9

    Article  CAS  Google Scholar 

  194. Zhang Y, Li Y, Ma H, Yu T (2013) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177. https://doi.org/10.1016/j.compscitech.2013.08.037

    Article  CAS  Google Scholar 

  195. Rahman H, Alimuzzaman S, Sayeed MM, Khan RA (2019) Effect of gamma radiation on mechanical properties of pineapple leaf fiber (PALF)-reinforced low-density polyethylene (LDPE) composites. Int J Plast Technol 23(2):229–238. https://doi.org/10.1007/s12588-019-09253-4

    Article  CAS  Google Scholar 

  196. Hanan F, Jawaid M, Tahir PM (2018) Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. J Nat Fibers 17(2):155–167. https://doi.org/10.1080/15440478.2018.1477083

    Article  CAS  Google Scholar 

  197. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CNA (2015) The effect of gelation and curing temperatures on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites. Fibers Polym 16(12):2645–2651. https://doi.org/10.1007/s12221-015-5535-z

    Article  CAS  Google Scholar 

  198. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CNA (2018) The effect of pulling speed on mechanical properties of pultruded kenaf fiber reinforced vinyl ester composites. J Vinyl Addit Technol 24:E13–E20. https://doi.org/10.1002/vnl.21552

    Article  CAS  Google Scholar 

  199. Alqahtani SA, Burger K, Potolicchio S (2015) Cocaine-induced acute fatal basilar artery thrombosis: report of a case and review of the literature. Am J Med Case Rep 16:393. https://doi.org/10.12659/AJCR.894565

    Article  Google Scholar 

  200. Khan T, Sultan MTH, Shah AUM, Ariffin AH, Jawaid M (2021) The effects of stacking sequence on the tensile and flexural properties of kenaf/jute fibre hybrid composites. J Nat Fibers 18(3):452–463. https://doi.org/10.1080/15440478.2019.1629148

    Article  CAS  Google Scholar 

  201. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2014) Mechanical performance of woven kenaf-Kevlar hybrid composites. J Reinf Plast Compos 33(24):2242–2254. https://doi.org/10.1177/0731684414559864

    Article  CAS  Google Scholar 

  202. Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31(10):4927–4932. https://doi.org/10.1016/j.matdes.2010.05.021

    Article  CAS  Google Scholar 

  203. Siakeng R, Jawaid M, Asim M, Saba N, Sanjay MR, Siengchin S, Fouad H (2020) Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: evaluation of mechanical, morphological, thermal and physical properties. Express Polym Lett 14(8):717–730. https://doi.org/10.3144/expresspolymlett.2020.59

    Article  CAS  Google Scholar 

  204. Senthilkumar K, Saba N, Chandrasekar M, Jawaid M, Rajini N, Alothman OY, Siengchin S (2019) Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr Build Mater 195:423–431. https://doi.org/10.1016/j.conbuildmat.2018.11.081

    Article  CAS  Google Scholar 

  205. Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Potentiality of pineapple leaf fibre as reinforcement in PALF-polyester composite: surface modification and mechanical performance. J Reinf Plast Compos 20(4):321–334. https://doi.org/10.1177/073168401772678779

    Article  CAS  Google Scholar 

  206. Matsuzaki R, Ueda M, Namiki M et al (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 6:23058. https://doi.org/10.1038/srep23058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Odusote JK, Oyewo AT (2016) Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Eng Technol 7(1):125–139

    Google Scholar 

  208. Chand N, Fahim M (2020) Sisal-reinforced polymer composites. Tribology of natural fiber polymer composites. Woodhead Publishing

    Google Scholar 

  209. Ouhaibi S, Mrajji O, El Wazna M, Gounni A, Belouaggadia N, Ezzine M, Lbibb R, El Bouari A, Cherkaoui O (2021) Sisal-fibre based thermal insulation for use in buildings. Adv Build Energy Res. https://doi.org/10.1080/17512549.2021.1982768

    Article  Google Scholar 

  210. Nirmal U, Hashim J, Ahmad MM (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104. https://doi.org/10.1016/j.triboint.2014.11.003

    Article  CAS  Google Scholar 

  211. Ramesh M, Palanikumar K, Reddy KH (2013) Comparative evaluation on properties of hybrid glass fiber- sisal/jute reinforced epoxy composites. Procedia Eng 51:745–750. https://doi.org/10.1016/j.proeng.2013.01.106

    Article  CAS  Google Scholar 

  212. Sreekumar PA, Saiah R, Saiter JM, Leblanc N, Joseph K, Unnikrishnan G, Thomas S (2009) Dynamic mechanical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding. Polym Compos 30(6):768–775. https://doi.org/10.1002/pc.20611

    Article  CAS  Google Scholar 

  213. Rambo DAS, de Oliveira CU, Salvador RP, Toledo Filho RD, Gomes ODFM, de Andrade SF, de Melo VM (2021) Sisal textile reinforced concrete: improving tensile strength and bonding through peeling and nano-silica treatment. Constr Build Mater 301:124300. https://doi.org/10.1016/j.conbuildmat.2021.124300

    Article  CAS  Google Scholar 

  214. Sathees Kumar S, Mugesh Raja V, Chakravarthy C, Muthalagu R (2021) Determination of mechanical properties and characterization of alkali treated sugarcane bagasse, pine apple leaf and sisal fibers reinforced hybrid polyester composites for various applications. Fibers Polym 22(6):1675–1683. https://doi.org/10.1007/s12221-021-0910-4

    Article  CAS  Google Scholar 

  215. Jagadeesh P, Puttegowda M, Girijappa YGT, Rangappa SM, Siengchin S (2022) Carbon fiber reinforced areca/sisal hybrid composites for railway interior applications: mechanical and morphological properties. Polym Compos 43(1):160–172. https://doi.org/10.1002/pc.26364

    Article  CAS  Google Scholar 

  216. Samouh Z, Molnar K, Boussu F, Cherkaoui O, El Moznine R (2019) Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites. Polym Adv Technol 30(3):529–537. https://doi.org/10.1002/pat.4488

    Article  CAS  Google Scholar 

  217. Ji M, Li F, Li J, Li J, Zhang C, Sun K, Guo Z (2021) Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers. Mater Des 198:109373. https://doi.org/10.1016/j.matdes.2020.109373

    Article  CAS  Google Scholar 

  218. Agarwal J, Mohanty S, Nayak SK (2021) Polypropylene hybrid composites: effect of reinforcement of sisal and carbon fibre on mechanical, thermal and morphological properties. J Polym Eng 41(6):431–441. https://doi.org/10.1515/polyeng-2019-0355

    Article  CAS  Google Scholar 

  219. Bilisik K, Akter M (2022) Polymer nanocomposites based on graphite nanoplatelets (GNPs): a review on thermal-electrical conductivity, mechanical and barrier properties. J Mater Sci 57:7425–7480. https://doi.org/10.1007/s10853-022-07092-0

    Article  CAS  Google Scholar 

  220. Ashori A, Fallah A, Ghiyasi M, Rabiee M (2018) Reinforcing effects of functionalized graphene oxide on glass fiber/epoxy composites. Polym Compos 39(S4):E2324–E2333

    CAS  Google Scholar 

  221. Chen J, Huang Z, Lv W, Wang C (2018) Graphene oxide decorated sisal fiber/MAPP modified PP composites: toward high-performance biocomposites. Polym Compos 39:E113–E121. https://doi.org/10.1002/pc.24433

    Article  CAS  Google Scholar 

  222. Vishnuvardhan R, Kothari RR, Sivakumar S (2019) Experimental investigation on mechanical properties of sisal fiber reinforced epoxy composite. Mater Today: Proc 18:4176–4181. https://doi.org/10.1016/j.matpr.2019.07.362

    Article  CAS  Google Scholar 

  223. Sumesh KR, Kanthavel K, Vivek S (2019) Mechanical/thermal/vibrational properties of sisal, banana and coir hybrid natural composites by the addition of bio synthesized aluminium oxide nano powder. Mater Res Express 6(4):045318. https://doi.org/10.1088/2053-1591/aaff1a

    Article  CAS  Google Scholar 

  224. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos B Eng 174:106927. https://doi.org/10.1016/j.compositesb.2019.106927

    Article  CAS  Google Scholar 

  225. Al-Maharma AY, Al-Huniti N (2019) Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites. J Compos Sci 3(1):27. https://doi.org/10.3390/jcs3010027

    Article  CAS  Google Scholar 

  226. Senthilkumar K, Saba N, Chandrasekar M, Jawaid M, Rajini N, Siengchin S, Ayrilmis N, Mohammad F, Al-Lohedan HA (2021) Compressive, dynamic and thermo-mechanical properties of cellulosic pineapple leaf fibre/polyester composites: influence of alkali treatment on adhesion. Int J Adhes Adhes 106:102823. https://doi.org/10.1016/j.ijadhadh.2021.102823

    Article  CAS  Google Scholar 

  227. Prakash KB, Fageehi YA, Saminathan R, Manoj Kumar P, Saravanakumar S, Subbiah R, Arulmurugan B, Rajkumar S (2021) Influence of fiber volume and fiber length on thermal and flexural properties of a hybrid natural polymer composite prepared with banana stem, pineapple leaf, and S-glass. Adv Mater Sci Eng. https://doi.org/10.1155/2021/6329400

    Article  Google Scholar 

  228. Yusof Y, Bin Mat Nawi N, Alias MB (2016) Pineapple leaf fiber and pineapple peduncle fiber analyzing and characterization for yarn production. ARPN J Eng Appl Sci 11(6):4197–4202

    CAS  Google Scholar 

  229. Reddy MI, Kumar MA, Raju CRB (2018) Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites. Mater Today: Proc 5(1):458–462. https://doi.org/10.1016/j.matpr.2017.11.105

    Article  CAS  Google Scholar 

  230. Santosh Kumar DS, Praveen BA, Kiran Aithal S, Kempaiah UN (2015) Development of pineapple leaf fiber reinforced epoxy resin composites. Int Res J Eng Technol 2(3):2190–2193

  231. Mittal M, Chaudhary R (2018) Experimental investigation on the mechanical properties and water absorption behavior of randomly oriented short pineapple/coir fiber-reinforced hybrid epoxy composites. Mater Res Express 6(1):015313. https://doi.org/10.1088/2053-1591/aae944

    Article  CAS  Google Scholar 

  232. Aji IS, Zainudin ES, Khalina A, Sapuan SM, Khairul MD (2011) Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. J Reinf Plast Compos 30(6):546–553. https://doi.org/10.1177/07316844113991

    Article  CAS  Google Scholar 

  233. Daramola OO, Adediran AA, Adewuyi BO, Adewole O (2017) Mechanical properties and water absorption behaviour of treated pineapple leaf fibre reinforced polyester matrix composites. Leonardo J Sci 30:15–30

    Google Scholar 

  234. Bahra MS, Gupta VK, Aggarwal L (2017) Effect of fibre content on mechanical properties and water absorption behaviour of pineapple/HDPE composite. Mater Today: Proc 4(2):3207–3214. https://doi.org/10.1016/j.matpr.2017.02.206

    Article  Google Scholar 

  235. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2009) Influence of varying fiber lengths on mechanical, thermal, and morphological properties of MA-g-PP compatibilized and chemically modified short pineapple leaf fiber reinforced polypropylene composites. J Appl Polym Sci 113(6):3750–3756. https://doi.org/10.1002/app.30252

    Article  CAS  Google Scholar 

  236. Munawar RF, Jamil NH, Shahril MK, Skh Abdul Rahim SM, Zainal Abidin MZ, Azam MA, Lau KT (2015) Development of green composite: pineapple leaf fibers (PALF) reinforced polylactide (PLA). Applied mechanics and materials, vol 761. Trans Tech Publications Ltd., pp 520–525. https://doi.org/10.4028/www.scientific.net/AMM.761.520

    Chapter  Google Scholar 

  237. Agung EH, Hamdan MHM, Siregar JP, Bachtiar D, Tezara C, Jamiluddin J (2018) Water absorption behaviour and mechanical performance of pineapple leaf fibre reinforced polylactic acid composites. Int J Automot Mech Eng 15(4):5760–5774. https://doi.org/10.15282/ijame.15.4.2018.4.0441

    Article  CAS  Google Scholar 

  238. Zamri MH, Akil HM, MohdIshak ZA (2016) Pultruded kenaf fibre reinforced composites: effect of different kenaf fibre yarn tex. Procedia Chemistry 19:577–585. https://doi.org/10.1016/j.proche.2016.03.056

    Article  CAS  Google Scholar 

  239. Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96. https://doi.org/10.1016/j.conbuildmat.2014.11.043

    Article  Google Scholar 

  240. Suharty NS, Ismail H, Diharjo K, Handayani DS, Firdaus M (2016) Effect of kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites. Procedia Chem 19:253–258. https://doi.org/10.1016/j.proche.2016.03.102

    Article  CAS  Google Scholar 

  241. Selvan EV, Ponshanmugakumar A, Ramanan N, Naveen E (2021) Determination and investigation of mechanical behaviour on kenaf-sisal hybrid composite. Mater Today: Proc 46:3358–3362. https://doi.org/10.1016/j.matpr.2020.11.478

    Article  Google Scholar 

  242. Mohammed M, Betar BO, Rahman R, Mohammed AM, Osman AF, Jaafar M, Adam T, Dahham OS, Hashim U, Noriman NZ (2019) Zinc oxide nano particles integrated kenaf/unsaturated polyester biocomposite. J Renew Mater 7(10):967–982. https://doi.org/10.32604/jrm.2019.07562

    Article  CAS  Google Scholar 

  243. Al Faruque MA, Salauddin M, Raihan MM, Chowdhury IZ, Ahmed F, Shimo SS (2021) Bast fiber reinforced green polymer composites: a review on their classification, properties, and applications. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1958431

    Article  Google Scholar 

  244. Zamri MH, Md Akil H, Mohd Ishak ZA, Abu Bakar A (2015) Effect of different fiber loadings and sizes on pultruded kenaf fiber reinforced unsaturated polyester composites. Polym Compos 36(7):1224–1229. https://doi.org/10.1002/pc.23025

    Article  CAS  Google Scholar 

  245. Zhao S, Zhao Z, Yang Z, Ke L, Kitipornchai S, Yang J (2020) Functionally graded graphene reinforced composite structures: a review. Eng Struct 210:110339. https://doi.org/10.1016/j.engstruct.2020.110339

    Article  Google Scholar 

  246. Sanjay MR, Arpitha GR, Senthamaraikannan P, Kathiresan M, Saibalaji MA, Yogesha B (2018) The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J Nat Fibers. https://doi.org/10.1080/15440478.2018.1431828

    Article  Google Scholar 

  247. Ismail AS, Jawaid M, Naveen J (2019) Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials 12(13):2094. https://doi.org/10.3390/ma12132094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Atiqah A, Ansari MNM, Kamal MSS, Jalar A, Afeefah NN, Ismail N (2020) Effect of alumina trihydrate as additive on the mechanical properties of kenaf/polyester composite for plastic encapsulated electronic packaging application. J Mater Res Technol 9(6):12899–12906. https://doi.org/10.1016/j.jmrt.2020.08.116

    Article  CAS  Google Scholar 

  249. Ramesh M, Rajeshkumar L, Bhuvaneswari V (2021) Leaf fibres as reinforcements in green composites: a review on processing, properties and applications. Emergent Mater. https://doi.org/10.1007/s42247-021-00310-6

    Article  Google Scholar 

  250. Bande MM (2012) Ecophysiological and agronomic response of Abaca (Musa textilis) to different resource conditions in Leyte Island, Philippines

  251. Boddula R, Ahamed MI, Asiri AM (eds) (2020) Green adhesives: preparation, properties, and applications. Wiley

    Google Scholar 

  252. Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos B Eng 40(7):601–606. https://doi.org/10.1016/j.compositesb.2009.04.018

    Article  CAS  Google Scholar 

  253. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86(3):401–409. https://doi.org/10.1016/j.polymdegradstab.2004.04.026

    Article  CAS  Google Scholar 

  254. Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater 288(1):35–43. https://doi.org/10.1002/mame.200290031

    Article  CAS  Google Scholar 

  255. Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70(5):854–860

    CAS  Google Scholar 

  256. Malenab RAJ, Ngo JPS, Promentilla MAB (2017) Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials 10(6):579. https://doi.org/10.3390/ma10060579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kurien RA, Selvaraj DP, Koshy CP (2021) Worn surface morphological characterization of NaOH-treated chopped abaca fiber reinforced epoxy composites. J Bio- Tribo-Corros 7(1):1–8. https://doi.org/10.1007/s40735-020-00467-3

    Article  Google Scholar 

  258. Manickam S, Kannan TK, Simon BL, Rathanasamy R, Raj SS (2021) Influence of nanoclay on the technical properties of glass-abaca hybrid epoxy composite. Polímeros. https://doi.org/10.1590/0104-1428.08520

    Article  Google Scholar 

  259. Liu K, Yang Z, Takagi H (2014) Anisotropic thermal conductivity of unidirectional natural abaca fiber composites as a function of lumen and cell wall structure. Compos Struct 108:987–991. https://doi.org/10.1016/j.compstruct.2013.10.036

    Article  Google Scholar 

  260. Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Compos A: Appl Sci Manuf 43(8):1234–1241. https://doi.org/10.1016/j.compositesa.2012.02.020

    Article  CAS  Google Scholar 

  261. Liu K, Zhang X, Takagi H, Yang Z, Wang D (2014) Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Compos A: Appl Sci Manuf 66:227–236. https://doi.org/10.1016/j.compositesa.2014.07.018

    Article  CAS  Google Scholar 

  262. Banowati L, Sari P, Hadi BK (2021) August. Comparison analysis of abaca fiber/polyester and abaca-e-glass/polyester hybrid composites to impact strength and its application to ballistic. In: IOP conference series: materials science and engineering 1173(1): 012068. https://doi.org/10.1088/1757-899X/1173/1/012068

  263. Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GI (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos A: Appl Sci Manuf 90:589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    Article  CAS  Google Scholar 

  264. Paglicawan MA, Basilia BA, Kim BS (2013) Water uptake and tensile properties of plasma treated abaca fiber reinforced epoxy composite. Compos Res 26(3):165–169. https://doi.org/10.7234/composres.2013.26.3.165

    Article  Google Scholar 

  265. Vilaseca F, Valadez-Gonzalez A, Herrera-Franco PJ, Pèlach MÀ, López JP, Mutjé P (2010) Biocomposites from abaca strands and polypropylene. Part I: evaluation of the tensile properties. Bioresour Technol 101(1):387–395. https://doi.org/10.1016/j.biortech.2009.07.066

    Article  CAS  PubMed  Google Scholar 

  266. Zimniewska M, Wladyka-Przybylak M (2016) Natural fibers for composite applications. Fibrous and textile materials for composite applications springer. Springer, Singapore

    Google Scholar 

  267. Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6(11):5171–5198. https://doi.org/10.3390/ma6115171

    Article  PubMed  PubMed Central  Google Scholar 

  268. Ramesh M (2019) Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: a review on preparation, properties and prospects. Prog Mater Sci 102:109–166. https://doi.org/10.1016/j.pmatsci.2018.12.004

    Article  CAS  Google Scholar 

  269. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162. https://doi.org/10.1080/15583724.2014.971124

    Article  CAS  Google Scholar 

  270. Bourmaud A, Siniscalco D, Foucat L, Goudenhooft C, Falourd X, Pontoire B, Arnould O, Beaugrand J, Baley C (2019) Evolution of flax cell wall ultrastructure and mechanical properties during the retting step. Carbohydr Polym 206:48–56. https://doi.org/10.1016/j.carbpol.2018.10.065

    Article  CAS  PubMed  Google Scholar 

  271. Akin DE (2013) Linen most useful: perspectives on structure, chemistry, and enzymes for retting flax. Int Sch Res Notices. https://doi.org/10.5402/2013/186534

    Article  Google Scholar 

  272. Karine C, Jean-Paul J, Moussa G, Baley C, Laurent B, Joël B (2007) Morphology and mechanical behavior of a natural composite: the flax fiber. In: 16th international conference on composite materials. Kyoto, Japan (pp. 1–8)

  273. Sarasini F, Tirillò J, D’Altilia S, Valente T, Santulli C, Touchard F, Chocinski-Arnault L et al (2016) Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos B Eng 91:144–153. https://doi.org/10.1016/j.compositesb.2016.01.050

    Article  CAS  Google Scholar 

  274. Li X, Tabil LG, Oguocha IN, Panigrahi S (2008) Thermal diffusivity, thermal conductivity, and specific heat of flax fiber–HDPE biocomposites at processing temperatures. Compos Sci Technol 68(7–8):1753–1758. https://doi.org/10.1016/j.compscitech.2008.02.016

    Article  CAS  Google Scholar 

  275. Helwig M, Paukszta D (2000) Flammability of composites based on polypropylene and flax fibers molecular crystals and liquid crystals science and technology. Section A Mol Cryst Liq Cryst 354(1):373–380. https://doi.org/10.1080/10587250008023629

    Article  CAS  Google Scholar 

  276. Bourmaud A, Le Duigou A, Gourier C, Baley C (2016) Influence of processing temperature on mechanical performance of unidirectional polyamide 11–flax fibre composites. Ind Crops Prod 84:151–165. https://doi.org/10.1016/j.indcrop.2016.02.007

    Article  CAS  Google Scholar 

  277. Zhang M, Bareille O, Salvia M (2019) Cure and damage monitoring of flax fiber-reinforced epoxy composite repairs for civil engineering structures using embedded piezo micro-patches. Constr Build Mater 225:196–203. https://doi.org/10.1016/j.conbuildmat.2019.07.179

    Article  CAS  Google Scholar 

  278. Habibi M, Laperrière L, Hassanabadi HM (2018) Influence of low-velocity impact on residual tensile properties of nonwoven flax/epoxy composite. Compos Struct 186:175–182. https://doi.org/10.1016/j.compstruct.2017.12.024

    Article  Google Scholar 

  279. Xia X, Shi X, Liu W, Zhao H, Li H, Zhang Y (2017) Effect of flax fiber content on polylactic acid (PLA) crystallization in PLA/flax fiber composites. Iran Polym J 26(9):693–702. https://doi.org/10.1007/s13726-017-0554-9

    Article  CAS  Google Scholar 

  280. Stepczyńska M, Rytlewski P (2018) Enzymatic degradation of flax-fibers reinforced polylactide. Int Biodeterior Biodegradation 126:160–166. https://doi.org/10.1016/j.ibiod.2017.11.001

  281. Duc F, Bourban PE, Plummer CJG, Månson JA (2014) Damping of thermoset and thermoplastic flax fibre composites. Compos A Appl Sci Manuf 64:115–123. https://doi.org/10.1016/j.compositesa.2014.04.016

    Article  CAS  Google Scholar 

  282. Liber-Kneć A, Kuźniar P, Kuciel S (2015) Accelerated fatigue testing of biodegradable composites with flax fibers. J Polym Environ 23(3):400–406. https://doi.org/10.1007/s10924-015-0719-6

    Article  CAS  Google Scholar 

  283. Amiri A, Krosbakken T, Schoen W, Theisen D, Ulven CA (2018) Design and manufacturing of a hybrid flax/carbon fiber composite bicycle frame. Proc Inst Mech Eng Pt P J 232(1):28–38. https://doi.org/10.1177/1754337117716237

    Article  Google Scholar 

  284. Bagheri ZS, El Sawi I, Schemitsch EH, Zdero R, Bougherara H (2013) Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications. J Mech Behav Biomed Mater 20:398–406. https://doi.org/10.1016/j.jmbbm.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  285. Almansour FA, Dhakal HN, Zhang ZY, Ghasemnejad H (2017) Effect of hybridization on the mode II fracture toughness properties of flax/vinyl ester composites. Polym Compos 38(8):1732–1740. https://doi.org/10.1002/pc.23743

    Article  CAS  Google Scholar 

  286. Wang H, Yang L, Wu H (2021) Study on mechanical and thermomechanical properties of flax/glass fiber hybrid-reinforced epoxy composites. Polym Compos 42(2):714–723. https://doi.org/10.1002/pc.25860

    Article  CAS  Google Scholar 

  287. Chaudhary V, Bajpai PK, Maheshwari S (2018) Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. J Nat Fibers 15(1):80–97. https://doi.org/10.1080/15440478.2017.1320260

    Article  CAS  Google Scholar 

  288. Väisänen T, Batello P, Lappalainen R, Tomppo L (2018) Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Ind Crops Prod 111:422–429. https://doi.org/10.1016/j.indcrop.2017.10.049

    Article  CAS  Google Scholar 

  289. Liu M, Ale MT, Kołaczkowski B, Fernando D, Daniel G, Meyer AS, Thygesen A (2017) Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express 7(1):1–15. https://doi.org/10.1186/s13568-017-0355-8

    Article  CAS  Google Scholar 

  290. Vinayagamoorthy R (2017) A review on the polymeric laminates reinforced with natural fibers. J Reinf Plast Compos 36(21):1577–1589. https://doi.org/10.1177/0731684417718385

    Article  CAS  Google Scholar 

  291. Placet V, Trivaudey F, Cisse O, Gucheret-Retel V, Boubakar ML (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos Part A Appl Sci 43(2):275–287. https://doi.org/10.1016/j.compositesa.2011.10.019

    Article  CAS  Google Scholar 

  292. Thygesen LG, Eder M, Burgert I (2006) Dislocations in single hemp fibres—Investigations into the relationship of structural distortions and tensile properties at the cell wall level. J Mater Sci 42(2):558–564. https://doi.org/10.1007/s10853-006-1113-5

    Article  CAS  Google Scholar 

  293. Ribeiro MP, de Mendonça NL, da Silveira PHPM, da Luz FS, da Silva Figueiredo ABH, Monteiro SN, Moreira MO (2021) Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric. J Mater Res Technol 12:221–233. https://doi.org/10.1016/j.jmrt.2021.02.064

    Article  CAS  Google Scholar 

  294. Pinto F, Boccarusso L, De Fazio D, Cuomo S, Durante M, Meo M (2020) Carbon/hemp bio-hybrid composites: effects of the stacking sequence on flexural, damping and impact properties. Compos Struct 242:112148. https://doi.org/10.1016/j.compstruct.2020.112148

    Article  Google Scholar 

  295. Neves ACC, Rohen LA, Mantovani DP, Carvalho JP, Vieira CMF, Lopes FP, Simonassi NT, da Luz FS, Monteiro SN (2020) Comparative mechanical properties between biocomposites of epoxy and polyester matrices reinforced by hemp fiber. J Mater Res Technol 9(2):1296–1304. https://doi.org/10.1016/j.jmrt.2019.11.056

    Article  CAS  Google Scholar 

  296. Kassab Z, Abdellaoui Y, Salim MH, Bouhfid R, El Achaby M (2020) Micro-and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydr Polym 245:116506. https://doi.org/10.1016/j.carbpol.2020.116506

    Article  CAS  PubMed  Google Scholar 

  297. Kabir MM, Al-Haik MY, Aldajah SH, Lau KT, Wang H (2020) Impact properties of the chemically treated hemp fibre reinforced polyester composites. Fibers Polym 21(9):2098–2110. https://doi.org/10.1007/s12221-020-9630-4

    Article  CAS  Google Scholar 

  298. Boccarusso L, Durante M, Iucolano F, Mocerino D, Langella A (2020) Production of hemp-gypsum composites with enhanced flexural and impact resistance. Constr Build Mater 260:120476. https://doi.org/10.1016/j.conbuildmat.2020.120476

    Article  CAS  Google Scholar 

  299. Bhoopathi R, Ramesh M (2020) Influence of eggshell nanoparticles and effect of alkalization on characterization of industrial hemp fibre reinforced epoxy composites. Polym Environ 28(8):2178–2190. https://doi.org/10.1007/s10924-020-01756-1

    Article  CAS  Google Scholar 

  300. Hallad SA, Banapurmath NR, Patil V, Ajarekar VS, Patil A, Godi MT, Shettar AS (2018) Graphene reinforced natural fiber nanocomposites for structural applications. In: IOP conference series: materials science and engineering 376(1): 012072. https://doi.org/10.1088/1757-899X/376/1/012072

  301. Das S (2017) Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr Polym 172:60–67. https://doi.org/10.1016/j.carbpol.2017.05.036

    Article  CAS  PubMed  Google Scholar 

  302. Krishnan KB, Doraiswamy I, Chellamani KP (2005) Jute, bast and other plant fibers. Bast and other plant fibres. Woodhead Publishing, pp 24–92

    Google Scholar 

  303. Rahman MS (2010) Jute–a versatile natural fibre Cultivation, extraction and processing. Industrial applications of natural fibres: structure, properties and technical applications. Willey

    Google Scholar 

  304. Behera AK, Avancha S, Basak RK, Sen R, Adhikari B (2012) Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohydr Polym 88(1):329–335. https://doi.org/10.1016/j.carbpol.2011.12.023

    Article  CAS  Google Scholar 

  305. Sajin JB, Aurtherson PB, Binoj JS, Manikandan N, Saravanan MS, Haarison TM (2021) Influence of fiber length on mechanical properties and microstructural analysis of jute fiber reinforced polymer composites. Mater Today: Proc 39:398–402. https://doi.org/10.1016/j.matpr.2020.07.623

    Article  CAS  Google Scholar 

  306. Gupta MK, Srivastava RK (2016) Mechanical properties of hybrid fibers-reinforced polymer composite: a review. Polym Plast Technol Eng 55(6):626–642. https://doi.org/10.1080/03602559.2015.1098694

    Article  CAS  Google Scholar 

  307. Khalid MY, Arif ZU, Sheikh MF, Nasir MA (2021) Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. Int J Mater Form 14(5):1085–1095. https://doi.org/10.1007/s12289-021-01624-w

    Article  Google Scholar 

  308. Kumar MD, Senthamaraikannan C, Jayasrinivasan S, Aushwin S (2021) Study on static and dynamic behavior of jute/sisal fiber reinforced epoxy composites. Mater Today: Proc 46:9425–9428. https://doi.org/10.1016/j.matpr.2020.03.064

    Article  CAS  Google Scholar 

  309. Zaman HU, Khan AH, Hossain MA, Khan MA, Khan RA (2009) Mechanical and electrical properties of jute fabrics reinforced polyethylene/polypropylene composites: role of gamma radiation. Polym Plast Technol Eng 48(7):760–766. https://doi.org/10.1080/03602550902824655

    Article  CAS  Google Scholar 

  310. Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, Qaiss A (2015) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113. https://doi.org/10.1016/j.matdes.2014.11.059

    Article  CAS  Google Scholar 

  311. Sarker F, Potluri P, Afroj S, Koncherry V, Novoselov KS, Karim N (2019) Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites. ACS Appl Mater Interfaces 11(23):21166–21176

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Danso H (2017) Properties of coconut, oil palm and bagasse fibres: as potential building materials. Procedia Eng 200:1–9. https://doi.org/10.1016/j.proeng.2017.07.002

    Article  Google Scholar 

  313. Pham LJ (2016) Coconut (cocos nucifera). Industrial oil crops. AOCS Press, pp 231–242. https://doi.org/10.1016/B978-1-893997-98-1.00009-9

    Chapter  Google Scholar 

  314. Ravindranath AN, Sarma US (1995) Bioinoculants for coir retting. CORD 11(01):34–34. https://doi.org/10.37833/cord.v11i01.287

    Article  Google Scholar 

  315. Mohit H, Sanjay MR, Siengchin S, Khan A, Marwani HM, Dzudzevic-Cancar H, Asiri AM (2021) Effect of TiC nanoparticles reinforcement in coir fiber based bio/synthetic epoxy hybrid composites: mechanical and thermal characteristics. J Polym Environ 29(8):2609–2627. https://doi.org/10.1007/s10924-021-02069-7

    Article  CAS  Google Scholar 

  316. Mohit H, Srisuk R, Sanjay MR, Siengchin S, Khan A, Marwani HM, Dzudzevic-Cancar H, Asiri AM (2021) Nanoparticles addition in coir-basalt-innegra fibers reinforced bio-synthetic epoxy composites. J Polym Environ 29(11):3561–3573. https://doi.org/10.1007/s10924-021-02133-2

    Article  CAS  Google Scholar 

  317. Romli FI, Alias AN, Rafie ASM, Majid DLAA (2012) Factorial study on the tensile strength of a coir fiber-reinforced epoxy composite. AASRI Procedia 3:242–247. https://doi.org/10.1016/j.aasri.2012.11.040

    Article  Google Scholar 

  318. Sumesh KR, Kanthavel K, Ajithram A, Nandhini P (2019) Bioalumina nano powder extraction and its applications for sisal, coir and banana hybrid fiber composites: mechanical and thermal properties. J Polym Environ 27(9):2068–2077. https://doi.org/10.1007/s10924-019-01496-x

    Article  CAS  Google Scholar 

  319. Kavya HM, Bavan S, Yogesha B, Sanjay MR, Suchart S, Sergey G (2021) Effect of coir fiber and inorganic filler hybridization on Innegra fiber-reinforced epoxy polymer composites: physical and mechanical properties. Cellulose 28(15):9803–9820. https://doi.org/10.1007/s10570-021-04140-x

    Article  CAS  Google Scholar 

  320. Kumar S, Shamprasad MS, Varadarajan YS, Sangamesha MA (2021) Coconut coir fiber reinforced polypropylene composites: investigation on fracture toughness and mechanical properties. Mater Today: Proc 46:2471–2476. https://doi.org/10.1016/j.matpr.2021.01.402

    Article  CAS  Google Scholar 

  321. Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12(7):919–926. https://doi.org/10.1007/s12221-011-0919-1

    Article  CAS  Google Scholar 

  322. Siddika S, Mansura F, Hasan M, Hassan A (2014) Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers Polym 15(5):1023–1028. https://doi.org/10.1007/s12221-014-1023-0

    Article  CAS  Google Scholar 

  323. Singh Y, Singh J, Sharma S, Lam TD, Nguyen DN (2020) Fabrication and characterization of coir/carbon-fiber reinforced epoxy based hybrid composite for helmet shells and sports-good applications: influence of fiber surface modifications on the mechanical, thermal and morphological properties. J Mater Res Technol 9(6):15593–15603. https://doi.org/10.1016/j.jmrt.2020.11.023

    Article  CAS  Google Scholar 

  324. Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos B Eng 43(5):2434–2438. https://doi.org/10.1016/j.compositesb.2011.11.003

    Article  CAS  Google Scholar 

  325. Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19(6):628–635. https://doi.org/10.1002/pat.1130

    Article  CAS  Google Scholar 

  326. Afroughsabet V, Biolzi L, Ozbakkaloglu T (2016) High-performance fiber-reinforced concrete: a review. J Mater Sci 51(14):6517–6551. https://doi.org/10.1007/s10853-016-9917-4

    Article  CAS  Google Scholar 

  327. Mooney BP (2009) The second green revolution? Production of plant-based biodegradable plastics. Biochem J 418(2):219–232. https://doi.org/10.1042/BJ20081769

    Article  CAS  PubMed  Google Scholar 

  328. Zwawi M (2021) A review on natural fiber bio-composites, surface modifications and applications. Molecules 26(2):404. https://doi.org/10.3390/molecules26020404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Huda MK, Widiastuti I (2021) Natural fiber reinforced polymer in automotive application: a systematic literature review. In: Journal of physics: conference series (Vol. 1808, No. 1, p. 012015). IOP Publishing. https://doi.org/10.1088/1742-6596/1808/1/012015

  330. Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667. https://doi.org/10.1016/j.biortech.2007.09.043

    Article  CAS  PubMed  Google Scholar 

  331. Ray D (2015) State-of-the-art applications of natural fiber composites in the industry. Natural fiber composites, vol 5. CRC Press, p 319

    Google Scholar 

  332. Pickering K (ed) (2008) Properties and performance of natural-fibre composites. Elsevier

    Google Scholar 

  333. Suddell BC (2008) Industrial fibres: recent and current developments. In: Proceedings of the symposium on natural fibres, 20:71–82, FAO, CFC, Rome, Italy, October 2008

  334. Akampumuza O, Wambua PM, Ahmed A, Li W, Qin XH (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38(11):2553–2569. https://doi.org/10.1002/pc.23847

    Article  CAS  Google Scholar 

  335. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42(6):579–588. https://doi.org/10.1016/j.compositesa.2011.01.017

    Article  CAS  Google Scholar 

  336. Thilagavathi G, Pradeep E, Kannaian T, Sasikala L (2010) Development of natural fiber nonwovens for application as car interiors for noise control. J Ind Text 39(3):267–278. https://doi.org/10.1177/1528083709347124

    Article  CAS  Google Scholar 

  337. Bharath KN, Basavarajappa S (2016) Applications of biocomposite materials based on natural fibers from renewable resources: a review. Sci Eng Compos Mater 23(2):123–133. https://doi.org/10.1515/secm-2014-0088

    Article  Google Scholar 

  338. Mann GS, Singh LP, Kumar P, Singh S (2020) Green composites: a review of processing technologies and recent applications. J Thermoplast Compos Mater 33(8):1145–1171. https://doi.org/10.1177/0892705718816354

    Article  CAS  Google Scholar 

  339. Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33(1):7–22. https://doi.org/10.1016/j.indcrop.2010.09.009

    Article  CAS  Google Scholar 

  340. Puglia D, Biagiotti J, Kenny JM (2005) A review on natural fibre-based composites—Part II. J Nat Fibers 1(3):23–65

    Google Scholar 

  341. Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  342. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B Eng 44(1):120–127. https://doi.org/10.1016/j.compositesb.2012.07.004

    Article  CAS  Google Scholar 

  343. Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA, Hambali A (2014) Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–morphological chart-analytic hierarchy process method. Mater Des 54:473–482. https://doi.org/10.1016/j.matdes.2013.08.064

    Article  CAS  Google Scholar 

  344. Asyraf MRM, Syamsir A, Zahari NM, Supian ABM, Ishak MR, Sapuan SM, Sharma S, Rashedi A et al (2022) Product development of natural fibre-composites for various applications: design for sustainability. Polymers 14(5):920. https://doi.org/10.3390/polym14050920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Kalia S, Averous L (2011) Biopolymers: biomedical and environmental applications, vol 70. Wiley

    Google Scholar 

  346. Ozen E, Kiziltas A, Kiziltas EE, Gardner DJ (2012) Natural fiber blendsfilled engineering thermoplastic composites for the automobile industry. In: 12 annual auto composites conf exhib ACCE 2012, pp 1–12

  347. https://www.toyota-boshoku.com/global/development/product_technology/kenaf

  348. Prasannasrinivas R, Chandramohan D (2012) Analysis of natural fiber reinforced composite material for the helmet outer shell-a review. Int J Curr Res 4(3):137–141

    Google Scholar 

  349. Yuhazri MY, Sihombing H, Yahaya SH, Said MR, Nirmal UMAR, Lau SAIJOD, Prak Tom P (2012) Solid fuel from empty fruit bunch fiber and waste papers Part 6: dimension stability test after exposed to ambient condition. Global Eng Tech Rev 2(6):6–11

    Google Scholar 

  350. Finkbeiner M, Hoffmann R (2006) Application of life cycle assessment for the environmental certificate of the Mercedes-Benz S-Class (7 pp). Int J Life Cycle Assess 11(4):240–246. https://doi.org/10.1065/lca2006.05.248

    Article  CAS  Google Scholar 

  351. Dahy H (2019) Natural fibre-reinforced polymer composites (NFRP) fabricated from lignocellulosic fibres for future sustainable architectural applications, case studies: segmented-shell construction, acoustic panels, and furniture. Sensors 19(3):738. https://doi.org/10.3390/s19030738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Fan M, Fu F (2017) Introduction: a perspective e natural fibre composites in construction. Woodhead Publishing

    Google Scholar 

  353. Yu HN, Kim SS, Hwang IU (2008) Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes. Compos Struct 86(1–3):285–290. https://doi.org/10.1016/j.compstruct.2008.03.015

    Article  Google Scholar 

  354. Kinnane O, Reilly A, Grimes J, Pavia S, Walker R (2016) Acoustic absorption of hemp-lime construction. Constr Build Mater 122:674–682. https://doi.org/10.1016/j.conbuildmat.2016.06.106

    Article  CAS  Google Scholar 

  355. Akil H, Omar MF, Mazuki AM, Safiee SZAM, Ishak ZM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121. https://doi.org/10.1016/j.matdes.2011.04.008

    Article  CAS  Google Scholar 

  356. Papadopoulos AN, Hague JR (2003) The potential for using flax (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Ind Crops Prod 17(2):143–147. https://doi.org/10.1016/S0926-6690(02)00094-8

    Article  CAS  Google Scholar 

  357. Khalil HA, Fazita MN, Bhat AH, Jawaid M, Fuad NN (2010) Development and material properties of new hybrid plywood from oil palm biomass. Mater Des 31(1):417–424. https://doi.org/10.1016/j.matdes.2009.05.040

    Article  CAS  Google Scholar 

  358. Darsana P, Abraham R, Joseph A, Jasheela A, Binuraj PR, Sarma J (2016) Development of coir-fibre cement composite roofing tiles. Proc Technol 24:169–178. https://doi.org/10.1016/j.protcy.2016.05.024

    Article  Google Scholar 

  359. Satyanarayana KG, Sukumaran K, Kulkarni AG, Pillai SGK, Rohatgi PK (1986) Fabrication and properties of natural fibre-reinforced polyester composites. Composites 17(4):329–333. https://doi.org/10.1016/0010-4361(86)90750-0Get

    Article  CAS  Google Scholar 

  360. Alms JB, Yonko PJ, McDowell RC, Advani SG (2009) Design and development of an I-Beam from natural composites. J Biobased Mater Bioenergy 3(2):181–187. https://doi.org/10.1166/jbmb.2009.1014

    Article  CAS  Google Scholar 

  361. Yousif BF, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853. https://doi.org/10.1016/j.matdes.2011.01.063

    Article  CAS  Google Scholar 

  362. Yan L, Chouw N (2013) Experimental study of flax FRP tube encased coir fibre reinforced concrete composite column. Constr Build Mater 40:1118–1127. https://doi.org/10.1016/j.conbuildmat.2012.11.116

    Article  Google Scholar 

  363. Cevallos OA, Olivito RS, Codispoti R, Ombres L (2015) Flax and polyparaphenylene benzobisoxazole cementitious composites for the strengthening of masonry elements subjected to eccentric loading. Compos B Eng 71:82–95. https://doi.org/10.1016/j.compositesb.2014.10.055

    Article  CAS  Google Scholar 

  364. Luz FSD, Lima Junior EP, Louro LHL, Monteiro SN (2015) Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric. Mater Res 18:170–177. https://doi.org/10.1590/1516-1439.358914

    Article  CAS  Google Scholar 

  365. Monteiro SN, Milanezi TL, Louro LHL, Lima EP Jr, Braga FO, Gomes AV, Drelich JW (2016) Novel ballistic ramie fabric composite competing with Kevlar™ fabric in multilayered armor. Mater Des 96:263–269. https://doi.org/10.1016/j.matdes.2016.02.024

    Article  CAS  Google Scholar 

  366. Monteiro SN, Lopes FPD, Barbosa AP, Bevitori AB, Silva ILAD, Costa LLD (2011) Natural lignocellulosic fibers as engineering materials—An overview. Metall Mater Trans A 42(10):2963–2974. https://doi.org/10.1007/s11661-011-0789-6

    Article  CAS  Google Scholar 

  367. Güven O, Monteiro SN, Moura EA, Drelich JW (2016) Re-emerging field of lignocellulosic fiber–polymer composites and ionizing radiation technology in their formulation. Polym Rev 56(4):702–736. https://doi.org/10.1080/15583724.2016.1176037

    Article  CAS  Google Scholar 

  368. van der Werff H, Heisserer U (2016) High-performance ballistic fibers: Ultra-high molecular weight polyethylene (UHMWPE). Advanced fibrous composite materials for ballistic protection. Woodhead Publishing, pp 71–107. https://doi.org/10.1016/B978-1-78242-461-1.00003-0

    Chapter  Google Scholar 

  369. Pach J, Pyka D, Jamroziak K, Mayer P (2017) The experimental and numerical analysis of the ballistic resistance of polymer composites. Compos B Eng 113:24–30. https://doi.org/10.1016/j.compositesb.2017.01.006

    Article  CAS  Google Scholar 

  370. Haro EE, Szpunar JA, Odeshi AG (2018) Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Def Technol 14(3):238–249. https://doi.org/10.1016/j.dt.2018.03.005

    Article  Google Scholar 

  371. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2016) Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers Polym 17(2):275–281. https://doi.org/10.1007/s12221-016-5678-6

    Article  CAS  Google Scholar 

  372. Luz FSD, Garcia Filho FDC, Oliveira MS, Nascimento LFC, Monteiro SN (2020) Composites with natural fibers and conventional materials applied in a hard armor: a comparison. Polymers 12(9):1920. https://doi.org/10.3390/polym12091920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Salman SD, Leman Z, Ishak MR, Sultan MTH, Cardona F (2018) Quasi-static penetration behavior of plain woven kenaf/aramid reinforced polyvinyl butyral hybrid laminates. J Ind Text 47(7):1427–1446. https://doi.org/10.1177/15280837176925

    Article  CAS  Google Scholar 

  374. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2014) Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Mater Des 63:775–782. https://doi.org/10.1016/j.matdes.2014.07.010

    Article  Google Scholar 

  375. Anidha S, Latha N, Muthukkumar M (2020) Effect of polyaramid reinforced with sisal epoxy composites: tensile, impact, flexural and morphological properties. J Mater Res Technol 9(4):7947–7954. https://doi.org/10.1016/j.jmrt.2020.04.081

    Article  CAS  Google Scholar 

  376. Jambari S, Yahya MY, Abdullah MR, Jawaid M (2017) Woven Kenaf/Kevlar hybrid yarn as potential fiber reinforced for anti-ballistic composite material. Fibers Polym 18(3):563–568. https://doi.org/10.1007/s12221-017-6950-0

    Article  CAS  Google Scholar 

  377. Salman SD, Leman Z, Sultan MT, Ishak MR, Cardona F (2016) Ballistic impact resistance of plain woven kenaf/aramid reinforced polyvinyl butyral laminated hybrid composite. BioResources 11(3):7282–7295

    CAS  Google Scholar 

  378. Ali A, Shaker ZR, Khalina A, Sapuan SM (2011) Development of anti-ballistic board from ramie fiber. Polym Plast Technol Eng 50(6):622–634. https://doi.org/10.1080/03602559.2010.551381

    Article  CAS  Google Scholar 

  379. Monteiro SN, Louro LHL, Trindade W, Elias CN, Ferreira CL, de Sousa LE, Weber RP, Miguez Suarez JC et al (2015) Natural curaua fiber-reinforced composites in multilayered ballistic armor. Metall Mater Trans A 46(10):4567–4577. https://doi.org/10.1007/s11661-015-3032-z

    Article  CAS  Google Scholar 

  380. Marsyahyo E, Jamasri, Rochardjo HSB, Soekrisno (2009) Preliminary investigation on bulletproof panels made from ramie fiber reinforced composites for NIJ level II, IIA, and IV. J Ind Text 39(1):13–26. https://doi.org/10.1177/1528083708098913

    Article  CAS  Google Scholar 

  381. Rohen LA, Margem FM, Monteiro SN, Vieira CMF, Madeira de Araujo B, Lima ES (2015) Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multilayered armor. Mater Res 18:55–62. https://doi.org/10.1590/1516-1439.346314

    Article  CAS  Google Scholar 

  382. da Silva AO, de Castro Monsores KG, Oliveira SDSA, Weber RP, Monteiro SN (2018) Ballistic behavior of a hybrid composite reinforced with curaua and aramid fabric subjected to ultraviolet radiation. J Mater Res Technol 7(4):584–591. https://doi.org/10.1016/j.jmrt.2018.09.004

    Article  CAS  Google Scholar 

  383. Reis RHM, Nunes LF, da Luz FS, Candido VS, da Silva ACR, Monteiro SN (2021) Ballistic performance of guaruman fiber composites in multilayered armor system and as single target. Polymers 13(8):1203. https://doi.org/10.3390/polym13081203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Azmi AMR, Sultan MTH, Jawaid M, Shah AUM, Nor AFM, Majid MSA, Muhamad S, Talib ARA (2019) Impact properties of kenaf Fibre/X-ray films hybrid composites for structural applications. J Mater Res Technol 8(2):1982–1990. https://doi.org/10.1016/j.jmrt.2018.12.016

    Article  CAS  Google Scholar 

  385. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015) Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Mater Des 67:173–179. https://doi.org/10.1016/j.matdes.2014.11.024

    Article  CAS  Google Scholar 

  386. Azrin Hani Abdul R, Roslan A, Jaafar M, Roslan MN, Ariffin S (2011) Mechanical properties evaluation of woven coir and kevlar reinforced epoxy composites. Advanced materials research, vol 277. Trans Tech Publications Ltd., pp 36–42

    Google Scholar 

  387. Radif ZS, Ali A, Abdan K (2011) Development of a green combat armour from rame-Kevlar-polyester composite. Pertanika J Sci Technol 19(2):339–348

    Google Scholar 

  388. Luz FSD, Monteiro SN, Lima ES, Lima ÉP (2017) Ballistic application of coir fiber reinforced epoxy composite in multilayered armor. Mater Res 20:23–28. https://doi.org/10.1590/1980-5373-MR-2016-0951

    Article  Google Scholar 

  389. httpwww.envirotextile.com

  390. Khalid MY, Nasir MA, Ali A, Al Rashid A, Khan MR (2020) Experimental and numerical characterization of tensile property of jute/carbon fabric reinforced epoxy hybrid composites. SN Appl Sci 2(4):1–10. https://doi.org/10.1007/s42452-020-2403-2

    Article  CAS  Google Scholar 

  391. http://cargocollective.com/Jamesdart/FLAX-Revolucion

  392. Shah DU, Schubel PJ, Clifford MJ (2013) Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos B Eng 52:172–181. https://doi.org/10.1016/j.compositesb.2013.04.027

    Article  CAS  Google Scholar 

  393. Zaiton A, Assem Y, Arafa A, Momen A, Said S (2018) Synthesis of some bioactive compounds and its application as antimicrobial agents for plastic industry. Egypt J Chem 61(3):431–445. https://doi.org/10.21608/EJCHEM.2018.2947.1243

    Article  Google Scholar 

  394. Hashem M, Refaie R, Zaghloul S, Ezzat A, Ellaithy A, Shaaban AH (2017) Bioactive jute fabrics for packaging and storage of grains and legumes applications. Egypt J Chem 60(4):551–561. https://doi.org/10.21608/ejchem.2017.859.1038

    Article  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MA contributed to methodology, conceptualization, supervision, formal analysis, writing–review & editing, Md. HU contributed to investigation, experimental designing, visualization, resources, writing and draft preparation and reference management. HRA contributed to writing & editing and draft preparation.

Corresponding author

Correspondence to Mahmuda Akter.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, M., Uddin, M.H. & Anik, H.R. Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications. Polym. Bull. 81, 1–85 (2024). https://doi.org/10.1007/s00289-023-04733-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04733-5

Keywords

Navigation