Skip to main content
Log in

Groundstates for Planar Schrödinger–Poisson System Involving Convolution Nonlinearity and Critical Exponential Growth

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper is concerned with a planar Schrödinger–Poisson system involving Stein–Weiss nonlinearity

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+\phi u=\frac{1}{|x|^\beta } \left( \int _{\mathbb {R}^2}\frac{F(u(y))}{|x-y|^\mu |y|^\beta }dy\right) f(u),\ &{}x\in \mathbb {R}^2,\\ \Delta \phi =u^2, \ {} &{}x\in \mathbb {R}^2,\\ \end{array}\right. } \end{aligned}$$
(0.1)

and its degenerate case

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\phi u= \left( \int _{\mathbb {R}^2}\frac{F(u(y))}{|x-y|^\mu }dy\right) f(u),\ {} &{}x\in \mathbb {R}^2,\\ \Delta \phi =u^2, \ {} &{}x\in \mathbb {R}^2,\\ \end{array}\right. } \end{aligned}$$
(0.2)

where \(\beta \ge 0,\) \(0<\mu <2\), \(2\beta +\mu <2\), \(V\in \mathcal {C}(\mathbb {R}^2,\mathbb {R})\) and f is of exponential critical growth. By combining variational methods, Stein–Weiss inequality and some delicate analysis, we derive the existence of ground state solution for the first system. Under some mild assumptions, we introduce the Pohozaev identity of the equivalent equation of the second system and use Jeanjean’s monotonicity method to achieve the existence of nontrivial solution for the second system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alves, C., Figueiredo, F.: Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth. J. Math. Phys. 60, 1–14 (2019)

    Article  Google Scholar 

  3. Alves, C., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödigner equation in \({\mathbb{R} }^2\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  Google Scholar 

  4. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  5. Biswas, R., Goyal, S., Sreenadh, K.: Quasilinear Choquard equations involving N-Laplacian and critical exponential nonlinearity. https://doi.org/10.48550/arXiv.2111.11134

  6. Buffoni, B., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with “strong’’ resonance at infinity. Nonlinear Anal. 7, 981–1012 (1983)

    Article  MathSciNet  Google Scholar 

  7. Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({\mathbb{R} }^2\). Commun. Part. Differ. Equ. 17, 407–435 (1992)

    Article  Google Scholar 

  8. Carvalho, J., Figueiredo, G., Furtado, M., Medeiros, E.: On a zero-mass \((N, q)\)-Laplacian equation in \({\mathbb{R} }^N\) with exponential critical growth. Nonlinear Anal. 213, 112488 (2021)

    Article  Google Scholar 

  9. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 246, 521–541 (2010)

    Article  Google Scholar 

  10. Chen, S., Tang, X.: Existence of ground state solutions for the planar axially symmetric Schrödinger–Poisson system. Discret. Contin. Dyn. Syst. Ser. B 24, 4685–4702 (2019)

    Google Scholar 

  11. Chen, S., Tang, X.: On the planar Schrödinger–Poisson system with the axially symmetric potentials. J. Differ. Equ. 268, 945–976 (2020)

    Article  Google Scholar 

  12. Chen, L., Liu, Z., Lu, G., Tao, C.: Reverse Stein-Weiss inequalities and existence of their extremal functions. Trans. Am. Math. Soc. 370, 8429–8450 (2018)

    Article  MathSciNet  Google Scholar 

  13. Chen, L., Lu, G., Tao, C.: Existence of extremal functions for the Stein–Weiss inequalities on the Heisenberg group. J. Funct. Anal. 277, 1112–1138 (2019)

    Article  MathSciNet  Google Scholar 

  14. Cingolani, C., Weth, T.: On the planar Schrödinger–Poisson system. Ann. I. H. Poincaré 33, 169–197 (2016)

    Article  Google Scholar 

  15. Dong, X., Mao, A.: Quasilinear Schrödinger–Poisson equations involving a nonlocal term and an integral constraint. Sci. China Math. 65, 2297–2324 (2022)

    Article  MathSciNet  Google Scholar 

  16. Du, M., Weth, T.: Ground states and high energy solutions of the planar Schrödinger–Poisson system. Nonlinearity 30, 3492–3515 (2017)

    Article  MathSciNet  Google Scholar 

  17. Du, L., Gao, F., Yang, M.: On elliptic equations with Stein–Weiss type convolution parts. Math. Z. 301, 2185–2225 (2022)

    Article  MathSciNet  Google Scholar 

  18. Figueiredo, G., Montenegro, M.: Fitzhugh–Nagumo system with zero mass and critical growth. Israel J. Math. 245, 711–733 (2021)

    Article  MathSciNet  Google Scholar 

  19. Figueiredo, D., Miyagaki, O., Ruf, B.: Elliptic equations in \({\mathbb{R} }^2\) with nonlinearities in the critical growth range. Calc. Var. Part. Differ. Equ. 3, 139–153 (1995)

    Article  Google Scholar 

  20. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  21. Ji, C., Rădulescu, V.D.: Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J. Differ. Equ. 306, 251–279 (2022)

    Article  MathSciNet  Google Scholar 

  22. Jin, S., Seok, J.: Solitary waves for the nonlinear Schrödinger–Poisson system with positron–electron interaction. Calc. Var. Part. Differ. Equ. 62, 72 (2023)

    Article  Google Scholar 

  23. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  24. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Province (1997)

    Google Scholar 

  25. Lin, X., Tang, X.: On concave perturbations of a periodic elliptic problem in \(\mathbb{R} ^2\) involving critical exponential growth. Adv. Nonlinear Anal. 12, 169–181 (2023)

    Article  MathSciNet  Google Scholar 

  26. Lions, P.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1, 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  27. Liu, Y., Li, X., Chao, J.: Multiplicity of concentrating solutions for a class of magnetic Schrödinger–Poisson type equation. Adv. Nonlinear Anal. 10, 131–151 (2021)

    Article  MathSciNet  Google Scholar 

  28. Liu, L., Rădulescu, V., Tang, T., Zhang, J.: Another look at planar Schrödinger–Newton systems. J. Differ. Equ. 328, 65–104 (2022)

    Article  Google Scholar 

  29. Mattner, L.: Strict definiteness of integrals via complete monotonicity of derivatives. Trans. Am. Math. Soc. 349, 3321–3342 (1997)

    Article  MathSciNet  Google Scholar 

  30. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  31. Pankov, A.: On decay of solutions to nonlinear Schrödinger equations. Proc. Am. Math. Soc. 136, 2565–2570 (2008)

    Article  Google Scholar 

  32. Qin, D., Tang, X.: On the planar Choquard equation with indefinite potential and critical exponential growth. J. Differ. Equ. 185, 40–98 (2021)

    Article  MathSciNet  Google Scholar 

  33. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  34. Stubbe, J.: Bound states of two-dimensional Schrödinger–Newton equations. http://arXiv.org/0807.4059

  35. Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ. 260, 2119–2149 (2016)

    Article  Google Scholar 

  36. Tang, X.: Non-Nehari manifold method for asymptotically periodic Schrödinger equations. Sci. China Math. 58, 715–728 (2015)

    Article  MathSciNet  Google Scholar 

  37. Tang, X., Chen, S.: Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson problems with general potentials. Discret. Contin. Dyn. Syst. 37, 4973–5002 (2017)

    Article  Google Scholar 

  38. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  Google Scholar 

  39. Willem, M.: Minimax Theorem. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  40. Yang, C., Mills, R.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191 (1954)

    Article  MathSciNet  Google Scholar 

  41. Yang, M., Radulescu, V.D., Zhou, X.: Critical Stein-Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions. Calc. Var. Part. Differ. Equ. 61, 109 (2022)

    Article  MathSciNet  Google Scholar 

  42. Zhang, Y., Tang, X.: Large perturbations of a magnetic system with Stein–Weiss convolution nonlinearity. J. Geom. Anal. 32, 27 (2022)

    Article  MathSciNet  Google Scholar 

  43. Zhang, Y., Tang, X., Rădulescu, V.: Anisotropic Choquard problems with Stein–Weiss potential: nonlinear patterns and stationary waves. C. R. Math. Acad. Sci. Paris 359, 959–968 (2021)

    Article  MathSciNet  Google Scholar 

  44. Zhang, N., Tang, X., Chen, S.: Mountain-pass type solutions for the Chern–Simons–Schrödinger equation with zero mass potential and critical exponential growth. J. Geom. Anal. 33, 1–28 (2022)

    Google Scholar 

  45. Zhang, L., Tang, X., Chen, P.: On the planar Kirchhoff-type problem involving supercritical exponential growth. Adv. Nonlinear Anal. 11, 1412–1446 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixi Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, P., Shu, M. & Wen, L. Groundstates for Planar Schrödinger–Poisson System Involving Convolution Nonlinearity and Critical Exponential Growth. J Geom Anal 34, 230 (2024). https://doi.org/10.1007/s12220-024-01671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01671-0

Keywords

Mathematics Subject Classification

Navigation