Skip to main content
Log in

Normalized Multi-peak Solutions to Nonlinear Elliptic Problems

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we establish the existence of positive multi-peak solutions to the following elliptic problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v+(\lambda +V(x))v=v^p \ {} &{}\text { in } \Omega ,\\ v>0 &{}\text { in }\Omega ,\\ \int _{\Omega }v^2dx=\rho , \end{array}\right. } \end{aligned}$$

where \(\Omega \) is a bounded smooth domain of \({\mathbb {R}}^N\) or the whole space \({\mathbb {R}}^N\), the exponent p satisfies \(1<p<\frac{N+2}{N-2}\) for \(N\ge 3\) and \(p>1\) for \(N=1,2\). For the case of mass subcritical, mass critical, and mass supercritical, we shall deal with the effect of \(\rho \) on the existence of the solution concentrating at k different points, which belong to either \(\partial \Omega \) or \(\Omega \), or \({\mathbb {R}}^N\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, W., Cai, Y.: Mathmatical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinb. A 148(2), 225–242 (2018)

    Article  Google Scholar 

  3. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R} }^3\). J. Math. Pures Appl. (9) 106(4), 583–614 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., Zhong, X., Zou, W.: Normalized solutions for a coupled Schrödinger system. Math. Ann. 380, 1713–1740 (2021)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Li, H., Zou, W.: Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems. Calc. Var. Partial Differ. Equ. 62(1) (2023), Paper No. 9, 34 pp

  6. Cao, D., Dancer, N., Noussair, E., Yan, S.: On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems. Discrete Contin. Dynam. Syst. 2, 221–236 (1996)

    Article  MathSciNet  Google Scholar 

  7. Cao, D., Peng, S., Yan, S.: Singularly Perturbed Methods for Nonlinear Elliptic Problems. Cambridge University Press, New York (2020)

    Google Scholar 

  8. Cerami, G., Wei, J.: Multiplicity of multiple interior peak solutions for some singularly perturbed Neumann problems. Int. Math. Res. Not. 12, 601–626 (1998)

    Article  MathSciNet  Google Scholar 

  9. D’Aprile, T., Pistoia, A.: Nodal solutions for some singularly perturbed Dirichlet problems. Trans. Am. Math. Soc. 363(7), 3601–3620 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dancer, N., Wei, J.: On the effect of domain topology in a singular perturbation problem. Topol. Methods Nonlinear Anal. 11, 227–248 (1998)

    Article  MathSciNet  Google Scholar 

  11. Dancer, N., Yan, S.: A singularly perturbed elliptic problem in bounded domains with nontrivial topology. Adv. Differ. Equ. 4, 347–368 (1999)

    MathSciNet  Google Scholar 

  12. Dancer, N., Yan, S.: Effect of the domain geometry on the existence of multipeak solutions for an elliptic problem. Topol. Methods Nonlinear Anal. 14, 1–38 (1999)

    Article  MathSciNet  Google Scholar 

  13. del Pino, M., Felmer, P., Wei, J.: Multi-peak solutions for some singular perturbation problems. Calc. Var. 10, 119–134 (2000)

    Article  MathSciNet  Google Scholar 

  14. del Pino, M., Felmer, P., Wei, J.: On the role of distance function in some singular perturbation problems. Commun. Partial Differ. Equ. 25, 155–177 (2000)

    Article  MathSciNet  Google Scholar 

  15. Gou, T., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31(5), 2319–2345 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  16. Grossi, M., Pistoia, A.: On the effect of critical points of distance function in superlinear elliptic problems. Adv. Differ. Equ. 5, 1397–1420 (2000)

    MathSciNet  Google Scholar 

  17. Grossi, M., Pistoia, A., Wei, J.: Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory. Calc. Var. Partial Differ. Equ. 11, 143–175 (2000)

    Article  MathSciNet  Google Scholar 

  18. Gui, C., Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differ. Equ. 158(1), 1–27 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  19. Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Can. J. Math. 52, 522–538 (2000)

    Article  MathSciNet  Google Scholar 

  20. Guo, Q., Tian, S., Zhou, Y.: Curve-like concentration for Bose-Einstein condensates. Calc. Var. Partial Differ. Equ. 61(2), Paper No. 63, 20 pp (2022)

  21. Guo, Q., Xie, H.: Existence and local uniqueness of normalized solutions for two-component Bose-Einstein condensates. Z. Angew. Math. Phys. 72(6), Paper No. 189, 25 pp (2021)

  22. Guo, Q., Yang, J.: Excited states for two-component Bose-Einstein condensates in dimension two. J. Differ. Equ. 343, 659–686 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  23. Guo, Y., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  24. Guo, Y., Wang, Z., Zeng, X., Zhou, H.: Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  25. Guo, Y., Zeng, X., Zhou, H.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  26. Guo, Y., Zeng, X., Zhou, H.: Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations. J. Differ. Equ. 256(7), 2079–2100 (2014)

    Article  Google Scholar 

  27. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R} }^N\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  Google Scholar 

  28. Li, Y., Ni, W.: Radial symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R} }^N\). Commun. Partial Differ. Equ. 18, 1043–1054 (1993)

    Article  Google Scholar 

  29. Li, Y., Nirenberg, L.: The Dirichlet problem for singularly perturbed elliptic equations. Commun. Pure Appl. Math. 51, 1445–1490 (1998)

    Article  MathSciNet  Google Scholar 

  30. Lin, F., Ni, W., Wei, J.: On the number of interior peak solutions for a singularly perturbed Neumann problem. Commun. Pure Appl. Math. 60, 252–281 (2007)

    Article  MathSciNet  Google Scholar 

  31. Luo, P., Peng, S., Wei, J., Yan, S.: Excited states of Bose-Einstein condensates with degenerate attractive interactions. Calc. Var. Partial Differ. Equ. 60(4), Paper No. 155, 33 pp (2021)

  32. Maeda, M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)

    Article  MathSciNet  Google Scholar 

  33. Mcleod, K., Serrin, J.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({\mathbb{R} }^N\). Arch. Ration. Mech. Anal. 99, 115–145 (1987)

    Article  Google Scholar 

  34. Ni, W., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48, 731–768 (1995)

    Article  MathSciNet  Google Scholar 

  35. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^2\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    Article  MathSciNet  Google Scholar 

  36. Noris, B., Tavares, H., Verzini, G.: Stable solitary waves with prescribed \(L^2\)-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin. Dyn. Syst. 35(12), 6085–6112 (2015)

    Article  MathSciNet  Google Scholar 

  37. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  38. Pellacci, B., Pistoia, A., Vaira, G., Verzini, G.: Normalized concentrating solutions to nonlinear elliptic problems. J. Differ. Equ. 275, 882–919 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  39. Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc. Var. Partial Differ. Equ. 56(5), Paper No. 133, 27 pp (2017)

  40. Wei, J.: On the interior spike solutions for some singular perturbation problems. Proc. R. Soc. Edinb. A 128(4), 849–874 (1998)

    Article  MathSciNet  Google Scholar 

  41. Wei, J.: On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem. J. Differ. Equ. 129, 315–333 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  42. Wei, J.: Conditions for two-peaked solutions of singularly perturbed elliptic equations. Manuscr. Math. 96, 113–136 (1998)

    Article  MathSciNet  Google Scholar 

  43. Wei, J., Winter, M.: Multi-peak solutions for a wide class of singular perturbation problems. J. Lond. Math. Soc. (2) 59(2), 585–606 (1999)

    Article  MathSciNet  Google Scholar 

  44. Zeng, X.: Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. A 37(3), 1749–1762 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were supported by Natural Science Foundation of Chongqing, China cstc2021ycjh-bgzxm0115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we are devoted to prove Proposition 4.1. To this end, let us first introduce some notations. Let \(H^1({\mathbb {R}}^N)\) be equipped with the usual scalar product and norm

$$\begin{aligned} \langle u,v\rangle =\int _{{\mathbb {R}}^N}(\nabla u\nabla v+uv)dx \text { and } \Vert u\Vert =\left( \int _{{\mathbb {R}}^N}\left( |\nabla u|^2+u^2\right) dx\right) ^{\frac{1}{2}}, \end{aligned}$$

and \(H^1_{\varepsilon }({\mathbb {R}}^N)\) be equipped with the usual scalar product and norm

$$\begin{aligned} \langle u,v\rangle _{\varepsilon }=\int _{{\mathbb {R}}^N}(\varepsilon ^2\nabla u\nabla v+uv)dx \text { and } \Vert u\Vert _{\varepsilon }=\left( \int _{{\mathbb {R}}^N}\left( \varepsilon ^2|\nabla u|^2+u^2\right) dx\right) ^{\frac{1}{2}}. \end{aligned}$$

Let \(\xi _i\), \(i=1,\cdots ,k\), be the critical points of V(x). We want to construct a solution \(u_\varepsilon \) of the form

$$\begin{aligned} u_{\varepsilon }(x)=\sum _{i=1}^k\left[ U\left( \frac{x-\xi _{i\varepsilon }}{\varepsilon }\right) -\varepsilon ^4W_{\xi _i}\left( \frac{x-\xi _{i\varepsilon }}{\varepsilon }\right) \right] +\phi _\varepsilon (x):=Z+\phi _\varepsilon (x), \end{aligned}$$

where

$$\begin{aligned} \xi _{i\varepsilon }=\varepsilon ^2\tau _i+\xi _i \text { with } \tau _i\in {\mathbb {R}}^N, \end{aligned}$$

\(W_{\xi _i} \in K^\perp \) is defined in (4.4) and \(\phi _\varepsilon \in K^\perp \) is a remainder term with

$$\begin{aligned} K^\perp :=span\left\{ \phi _\varepsilon \in H^1({\mathbb {R}}^N): \left\langle \phi _\varepsilon , \frac{\partial U\left( \frac{x-\xi _{i\varepsilon }}{\varepsilon }\right) }{\partial x_j}\right\rangle _{\varepsilon }=0, i=1,\cdots ,k, j=1,\cdots ,N\right\} . \end{aligned}$$

Then, \(\phi _\varepsilon \) satisfies the following equation

$$\begin{aligned} {\left\{ \begin{array}{ll} L_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon =l_{\varepsilon ,\varvec{\tau }} +R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon , \ x\in {\mathbb {R}}^N,\\ \phi _\varepsilon \in H^1({\mathbb {R}}^N), \end{array}\right. } \end{aligned}$$
(5.1)

where \(L_{\varepsilon ,\varvec{\tau }}\) is a bounded linear operator in \(H^1({\mathbb {R}}^N)\), defined by

$$\begin{aligned} \langle L_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon , \psi \rangle _{\varepsilon }{} & {} =\int _{{\mathbb {R}}^N}\left( \varepsilon ^2\nabla \phi _\varepsilon \nabla \psi +(1+\varepsilon ^2V(x))\phi _\varepsilon -pZ^{p-1}\phi _\varepsilon \psi \right) dx, \nonumber \\{} & {} \quad \forall \psi \in H^1({\mathbb {R}}^N), \end{aligned}$$
(5.2)

\(l_{\varepsilon ,\varvec{\tau }}\in H^1({\mathbb {R}}^N)\) satisfying

$$\begin{aligned}{} & {} \langle l_{\varepsilon ,\varvec{\tau }}, \psi \rangle _{\varepsilon } =\int _{{\mathbb {R}}^N}\left( \sum _{i=1}^k\left[ -U_i^p +\varepsilon ^4(H_{i}+pU_i^{p-1}W_i)\right] -\varepsilon ^2V(x)Z+Z^p\right) \psi dx, \nonumber \\{} & {} \quad \forall \psi \in H^1({\mathbb {R}}^N), \end{aligned}$$
(5.3)

with

$$\begin{aligned} U_i:=U\left( \frac{x-\xi _{i\varepsilon }}{\varepsilon }\right) ,\ H_{i}:=H_{\xi _i}:=H_{\xi _i}\left( \frac{x-\xi _{i\varepsilon }}{\varepsilon }\right) ,\ W_{i}:=W_{\xi _i}:=W_{\xi _i}\left( \frac{x-\xi _{i\varepsilon }}{\varepsilon }\right) , \end{aligned}$$

and \(R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \in H^1({\mathbb {R}}^N)\) satisfying

$$\begin{aligned} \langle R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon , \psi \rangle _{\varepsilon } =\int _{{\mathbb {R}}^N}\left( (Z+\phi _\varepsilon )^p-Z^p-pZ^{p-1}\phi _\varepsilon \right) \psi dx, \ \forall \psi \in H^1({\mathbb {R}}^N). \end{aligned}$$
(5.4)

We define the projection \(Q_{\varepsilon }\) from \(H^1({\mathbb {R}}^N)\) to \(K^\perp \) as follows

$$\begin{aligned} Q_{\varepsilon }u_{\varepsilon }:=u_{\varepsilon }-\sum _{j=1}^k\sum _{i=1}^Nb_{\varepsilon ,i,j}\frac{\partial U\left( \frac{x-\xi _{j\varepsilon }}{\varepsilon }\right) }{\partial x_i}:=u_{\varepsilon }-\sum _{j=1}^k\sum _{i=1}^Nb_{\varepsilon ,i,j}\frac{\partial U_j}{\partial x_i}. \end{aligned}$$
(5.5)

Then, we have the following result, which plays an essential role in carrying out the reduction argument.

Proposition 5.1

There exist \(\varepsilon _0>0\) and \(C>0\) such that, for any \(0<\varepsilon \le \varepsilon _0\) and any \(\tau _i\) for \(i=1,\cdots ,k\), one has

$$\begin{aligned} \Vert Q_{\varepsilon }L_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \Vert _{\varepsilon } \ge C\Vert \phi _\varepsilon \Vert _{\varepsilon }, \ \ \ \text{ for } \text{ all }\ \phi _\varepsilon \in K^\perp . \end{aligned}$$
(5.6)

Proof

We argue by contradiction. Assume that there exists \(\varepsilon _n\rightarrow 0\), \(\xi _{i\varepsilon _n}\rightarrow \xi _{i}\), \(\Vert \phi _n\Vert _{\varepsilon _n}^2=\varepsilon _n^N\) with \(\phi _n\in K^\perp \) such that

$$\begin{aligned} \Vert Q_{\varepsilon _n}L_{\varepsilon _n,\varvec{\tau }}\phi _n\Vert _{\varepsilon _n} \le \frac{1}{n} \Vert \phi _n\Vert _{\varepsilon _n}. \end{aligned}$$
(5.7)

By the definition of \(L_{\varepsilon ,\varvec{\tau }}\), we have

$$\begin{aligned} \int _{{\mathbb {R}}^N}\left( \varepsilon _n^2|\nabla \phi _n|^2 +(1+\varepsilon _n^2V(x))\phi _n^2 -pZ^{p-1}\phi _n^2\right) dx&=\langle L_{\varepsilon _n,\varvec{\tau }}\phi _n,\phi _n\rangle _{\varepsilon _n}\nonumber \\&=o(1)\Vert \phi _n\Vert _{\varepsilon _n}^2=o(\varepsilon _n^N). \end{aligned}$$
(5.8)

Let us take \(R>0\) large enough such that

$$\begin{aligned} pZ^{p-1}=p\left( \sum _{i=1}^kU_i-\varepsilon _n^4\sum _{i=1}^kW_i\right) ^{p-1} \le \frac{1}{2}\varepsilon _n^2V(x), \text { in }{\mathbb {R}}^N\setminus \cup _{i=1}^kB_{\varepsilon _nR}(\xi _{i\varepsilon _n}). \end{aligned}$$

Thus,

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\left( \varepsilon _n^2|\nabla \phi _n|^2 +(1+\varepsilon _n^2V(x))\phi _n^2 -pZ^{p-1}\phi _n^2\right) dx \nonumber \\&\quad =\Vert \phi _n\Vert _{\varepsilon _n}^2+\varepsilon _n^2\int _{{\mathbb {R}}^N}V(x)\phi _n^2dx -\int _{{\mathbb {R}}^N}pZ^{p-1}\phi _n^2dx \nonumber \\&\quad \ge \frac{1}{2}\varepsilon _n^N-\int _{\cup _{i=1}^kB_{\varepsilon _nR}(\xi _{i\varepsilon _n})}pZ^{p-1}\phi _n^2dx. \end{aligned}$$
(5.9)

Therefore, combining this with (5.8), we get

$$\begin{aligned} \varepsilon _n^N\le C\int _{\cup _{i=1}^kB_{\varepsilon _nR}(\xi _{i\varepsilon _n})}pZ^{p-1}\phi _n^2dx\le {\tilde{C}}\sum _{i=1}^k\int _{B_{\varepsilon _nR}(\xi _{i\varepsilon _n})}\phi _n^2dx. \end{aligned}$$
(5.10)

If we prove that

$$\begin{aligned} \int _{B_{\varepsilon _nR}(\xi _{i\varepsilon _n})}\phi _n^2dx=o(\varepsilon _n^N). \end{aligned}$$
(5.11)

Then, it is a contradiction with (5.10) and we obtain (5.6).

Next, we prove (5.11). Define

$$\begin{aligned} {\tilde{\phi }}_n(y)=\phi _n(\varepsilon _ny+\xi _{i\varepsilon _n}). \end{aligned}$$

By \(\Vert \phi _n\Vert _{\varepsilon _n}^2=\varepsilon _n^N\), we have \(\int _{{\mathbb {R}}^N}(|\nabla {\tilde{\phi }}_n|^2+{\tilde{\phi }}_n^2)dy\le C\). Thus, there exits a subsequence, still denote \({\tilde{\phi }}_n\), such that \({\tilde{\phi }}_n\rightharpoonup {\tilde{\phi }}\) in \(H^1({\mathbb {R}}^N)\) and \({\tilde{\phi }}_n\rightarrow {\tilde{\phi }}\) in \(L_{loc}^2({\mathbb {R}}^N)\). We first claim that

$$\begin{aligned} -\Delta {\tilde{\phi }}+{\tilde{\phi }}-pU^{p-1}{\tilde{\phi }}=0. \end{aligned}$$
(5.12)

In fact, for any \(\varphi \in H^1({\mathbb {R}}^N)\), we have

$$\begin{aligned} Q_{\varepsilon _n}\varphi =\varphi -\sum _{j=1}^k\sum _{i=1}^Nb_{\varepsilon _n,i,j}\frac{\partial U_j}{\partial x_i}\in K^\perp . \end{aligned}$$

Then,

$$\begin{aligned} \sum _{j=1}^k\sum _{i=1}^Nb_{\varepsilon _n,i,j}\langle \frac{\partial U_j}{\partial x_i},\frac{\partial U_m}{\partial x_l}\rangle _{\varepsilon _n} =\langle \varphi ,\frac{\partial U_m}{\partial x_l}\rangle _{\varepsilon _n}. \end{aligned}$$

Moreover, for some \(\alpha _{i,j,h,m}\), we obtain

$$\begin{aligned} b_{\varepsilon _n,h,m}=\sum _{j=1}^k\sum _{i=1}^N\alpha _{i,j,h,m}\langle \varphi ,\frac{\partial U_j}{\partial x_i}\rangle _{\varepsilon _n}. \end{aligned}$$
(5.13)

Let

$$\begin{aligned} \gamma _{i,j}=\langle L_{\varepsilon _n,\varvec{\tau }}\phi _n,\frac{\partial U_j}{\partial x_i}\rangle _{\varepsilon _n}. \end{aligned}$$

We deduce that for any \(\varphi \in K^\perp \),

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\left( \varepsilon _n^2\nabla \phi _n\nabla \varphi +(1+\varepsilon _n^2V(x))\phi _n\varphi -pZ^{p-1}\phi _n\varphi \right) dx \nonumber \\&\quad =\langle L_{\varepsilon _n,\varvec{\tau }}\phi _n,\varphi \rangle _{\varepsilon _n} \nonumber \\&\quad =\langle L_{\varepsilon _n,\varvec{\tau }}\phi _n,Q_{\varepsilon _n}\varphi +\sum _{j=1}^k\sum _{i=1}^Nb_{\varepsilon _n,i,j}\frac{\partial U_j}{\partial x_i}\rangle _{\varepsilon _n} \nonumber \\&\quad =\langle L_{\varepsilon _n,\varvec{\tau }}\phi _n,Q_{\varepsilon _n}\varphi \rangle _{\varepsilon _n} +\sum _{j=1}^k\sum _{i=1}^Nb_{\varepsilon _n,i,j}\gamma _{i,j}, \end{aligned}$$
(5.14)

where

$$\begin{aligned} \langle L_{\varepsilon _n,\varvec{\tau }}\phi _n,Q_{\varepsilon _n}\varphi \rangle _{\varepsilon _n} =\langle Q_{\varepsilon _n}L_{\varepsilon _n,\varvec{\tau }}\phi _n,Q_{\varepsilon _n}\varphi \rangle _{\varepsilon _n} =o(1)\Vert \phi _n\Vert _{\varepsilon _n}\Vert Q_{\varepsilon _n}\varphi \Vert _{\varepsilon _n} =o(\varepsilon _n^{\frac{N}{2}})\Vert \varphi \Vert _{\varepsilon _n}. \end{aligned}$$

Consequently, from (5.13), we have

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\left( \varepsilon _n^2\nabla \phi _n\nabla \varphi +(1+\varepsilon _n^2V(x))\phi _n\varphi -pZ^{p-1}\phi _n\varphi \right) dx =o(\varepsilon _n^{\frac{N}{2}})\Vert \varphi \Vert _{\varepsilon _n}\nonumber \\&\quad +\sum _{j=1}^k\sum _{i=1}^N\sigma _{i,j}\langle \varphi ,\frac{\partial U_j}{\partial x_i}\rangle _{\varepsilon _n}. \end{aligned}$$
(5.15)

Then, we estimate \(\sigma _{i,j}\). Let us choose \(\varphi =\frac{\partial U_m}{\partial x_h}\), we get \(\Vert \frac{\partial U_m}{\partial x_h}\Vert _{\varepsilon _n}^2=O(\varepsilon _n^{N-2})\) and for \(\phi _n\in K^\perp \),

$$\begin{aligned}&\sum _{j=1}^k\sum _{i=1}^N\sigma _{i,j}\langle \frac{\partial U_m}{\partial x_h},\frac{\partial U_j}{\partial x_i}\rangle _{\varepsilon _n} \nonumber \\&\quad =\int _{{\mathbb {R}}^N}\left( \varepsilon _n^2\nabla \phi _n\nabla \frac{\partial U_m}{\partial x_h} +(1+\varepsilon _n^2V(x))\phi _n\frac{\partial U_m}{\partial x_h} -pZ^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}\right) dx+o(\varepsilon _n^{N-1}) \nonumber \\&\quad =\langle \phi _n,\frac{\partial U_m}{\partial x_h}\rangle _{\varepsilon _n} +\int _{{\mathbb {R}}^N}\left( \varepsilon _n^2V(x)\phi _n\frac{\partial U_m}{\partial x_h} -pZ^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}\right) dx+o(\varepsilon _n^{N-1}) \nonumber \\&\quad =-\int _{{\mathbb {R}}^N}pZ^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx+o(\varepsilon _n^{N-1}). \end{aligned}$$
(5.16)

By [7, Lemma 6.1.1, Lemma 2.2.2], we get that for \(\delta >0\) small,

$$\begin{aligned} \int _{{\mathbb {R}}^N}pZ^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx =&\int _{{\mathbb {R}}^N}p\left( \sum _{j=1}^kU_j-\varepsilon _n^4\sum _{j=1}^kW_j\right) ^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx \nonumber \\ =&p\int _{{\mathbb {R}}^N}\left[ \left( \sum _{j=1}^kU_j-\varepsilon _n^4\sum _{j=1}^kW_j\right) ^{p-1} -(U_m-\varepsilon _n^4W_m)^{p-1}\right] \nonumber \\&\qquad \phi _n\frac{\partial U_m}{\partial x_h}dx \nonumber \\&+p\int _{{\mathbb {R}}^N}(U_m-\varepsilon _n^4W_m)^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx \nonumber \\ =&O(e^{-\frac{\delta }{\varepsilon _n}})\Vert \phi _n\Vert _{\varepsilon _n}+p\int _{{\mathbb {R}}^N}(U_m-\varepsilon _n^4W_m)^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx. \end{aligned}$$
(5.17)

It holds

$$\begin{aligned}&p\int _{{\mathbb {R}}^N}(U_m-\varepsilon _n^4W_m)^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx =p\int _{{\mathbb {R}}^N}U_m^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx \\&\quad +{\left\{ \begin{array}{ll} O\left( \int _{{\mathbb {R}}^N}(-\varepsilon _n^4W_m)^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx\right) \ {} &{}\text { if }1<p\le 2,\\ p\int _{{\mathbb {R}}^N}(-\varepsilon _n^4W_m)^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx\\ \qquad +O\left( \int _{{\mathbb {R}}^N}U_m^{\frac{p-1}{2}}(-\varepsilon _n^4W_m)^{\frac{p-1}{2}}\phi _n\frac{\partial U_m}{\partial x_h}dx\right) \ {} &{}\text { if }2<p\le 3,\\ p\int _{{\mathbb {R}}^N}(-\varepsilon _n^4W_m)^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx\\ \qquad +O\left( \int _{{\mathbb {R}}^N}(U_m^{p-2}\varepsilon _n^4W_m+(\varepsilon _n^4W_m)^{p-2}U_m)\phi _n\frac{\partial U_m}{\partial x_h}dx\right) \ {} &{}\text { if }p>3. \end{array}\right. } \end{aligned}$$

For \(\phi _n\in K^\perp \), we have

$$\begin{aligned} p\int _{{\mathbb {R}}^N}U_m^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx =\int _{{\mathbb {R}}^N}\left( -\varepsilon _n^2\Delta \frac{\partial U_m}{\partial x_h}+\frac{\partial U_m}{\partial x_h}\right) \phi _ndx=\langle \phi _n,\frac{\partial U_m}{\partial x_h}\rangle _{\varepsilon _n} =0. \end{aligned}$$
(5.18)

It follows from Hölder inequality, the fact that \(W_j\) is even and \(\frac{\partial U_m}{\partial x_h}\) is odd that

$$\begin{aligned}&p\varepsilon _n^{4(p-1)}\int _{{\mathbb {R}}^N}W_m^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx \nonumber \\&\quad \le C\varepsilon _n^{4(p-1)}\left( \int _{{\mathbb {R}}^N}W_m^{2(p-1)}\frac{\partial U_m}{\partial x_h}dx\right) ^{\frac{1}{2}}\left( \int _{{\mathbb {R}}^N}\phi _n^2\frac{\partial U_m}{\partial x_h}dx\right) ^{\frac{1}{2}} \nonumber \\&\quad \le C\varepsilon _n^{4(p-1)}\left( \left[ \int _{B_{\varepsilon _nR}(\xi _{m\varepsilon })}+\int _{{\mathbb {R}}^N\setminus B_{\varepsilon _nR}(\xi _{m\varepsilon })}\right] W_m^{2(p-1)}\frac{\partial U_m}{\partial x_h}dx\right) ^{\frac{1}{2}} \nonumber \\&\qquad \times \left( \left[ \int _{B_{\varepsilon _nR}(\xi _{m\varepsilon })}+\int _{{\mathbb {R}}^N\setminus B_{\varepsilon _nR}(\xi _{m\varepsilon }) }\right] \phi _n^2\frac{\partial U_m}{\partial x_h}dx\right) ^{\frac{1}{2}} \nonumber \\&\quad \le C\varepsilon _n^{N+4(p-1)}e^{-\frac{\delta }{\varepsilon _n}}. \end{aligned}$$
(5.19)

Similarly, we have

$$\begin{aligned} \int _{{\mathbb {R}}^N}U_m^{\frac{p-1}{2}}(-\varepsilon _n^4W_m)^{\frac{p-1}{2}}\phi _n\frac{\partial U_m}{\partial x_h}dx=o(\varepsilon _n^N) \end{aligned}$$
(5.20)

and

$$\begin{aligned} \int _{{\mathbb {R}}^N}(U_m^{p-2}\varepsilon _n^4W_m+(\varepsilon _n^4W_m)^{p-2}U_m)\phi _n\frac{\partial U_m}{\partial x_h}dx=o(\varepsilon _n^N). \end{aligned}$$
(5.21)

From (5.17)-(5.21), we get

$$\begin{aligned} p\int _{{\mathbb {R}}^N}(U_m-\varepsilon _n^4W_m)^{p-1}\phi _n\frac{\partial U_m}{\partial x_h}dx =o(\varepsilon _n^N), \end{aligned}$$

which together with (5.16) gives

$$\begin{aligned} \sum _{j=1}^k\sum _{i=1}^N\sigma _{i,j}\Bigg \langle \frac{\partial U_m}{\partial x_h},\frac{\partial U_j}{\partial x_i}\Bigg \rangle _{\varepsilon _n}=o(\varepsilon _n^{N-1}). \end{aligned}$$

Then combining this with (2.2.20), (2.2.21) of [7], we obtain

$$\begin{aligned} \sigma _{i,j}=o(\varepsilon _n). \end{aligned}$$

From (5.15), we then have

$$\begin{aligned} \int _{{\mathbb {R}}^N}\left( \varepsilon _n^2\nabla \phi _n\nabla \varphi +(1+\varepsilon _n^2V(x))\phi _n\varphi +pZ^{p-1}\phi _n\varphi \right) dx =o(\varepsilon _n^{\frac{N}{2}})\Vert \varphi \Vert _{\varepsilon _n}. \end{aligned}$$
(5.22)

Set \({\tilde{\varphi }}(y):=\varphi \left( \frac{y-\xi _{i\varepsilon _n}}{\varepsilon _n}\right) \), we find

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\left( \nabla {\tilde{\phi }}_n\nabla \varphi +(1+\varepsilon _n^2V(\varepsilon _ny+\xi _{i\varepsilon _n}))\phi _n\varphi +p\left( \sum _{j=1}^kU_j-\varepsilon _n^4\sum _{j=1}^kW_j\right) ^{p-1}\right. \nonumber \\&\left. (\varepsilon _ny+\xi _{i\varepsilon _n}){\tilde{\phi }}_n\varphi \right) dy \nonumber \\&\quad =\varepsilon _n^{-N}\int _{{\mathbb {R}}^N}\left( \varepsilon _n^2\nabla \phi _n\nabla {\tilde{\varphi }} +(1+\varepsilon _n^2V(y))\phi _n{\tilde{\varphi }}+p\left( \sum _{j=1}^kU_j- \varepsilon _n^4\sum _{j=1}^kW_j\right) ^{p-1}\phi _n{\tilde{\varphi }}\right) dy \nonumber \\&\quad =o(\varepsilon _n^{-\frac{N}{2}})\Vert {\tilde{\varphi }}\Vert _{\varepsilon _n}=o(1). \end{aligned}$$
(5.23)

Letting \(n\rightarrow \infty \) in (5.23), we see that \({\tilde{\phi }}\) satisfies (5.12). Thus, there exists \(c_j\) such that

$$\begin{aligned} {\tilde{\phi }}=\sum _{j=1}^Nc_j\frac{\partial U}{\partial x_j}. \end{aligned}$$
(5.24)

Since \(\phi _n\in K^\perp \), we have

$$\begin{aligned} 0=\langle \phi _n,\frac{\partial U_i}{\partial x_j}\rangle _{\varepsilon _n} =\int _{{\mathbb {R}}^N}\left( \varepsilon _n^2\nabla \phi _n\nabla \frac{\partial U_i}{\partial x_j}+\phi _n\frac{\partial U_i}{\partial x_j}\right) dx =p\int _{{\mathbb {R}}^N}U_i^{p-1}\phi _n\frac{\partial U_i}{\partial x_j}dx, \end{aligned}$$

this implies that

$$\begin{aligned} p\int _{{\mathbb {R}}^N}U^{p-1}{\tilde{\phi }}\frac{\partial U}{\partial x_j}dx=0 \text { for every } j=1,\cdots ,N. \end{aligned}$$

Thus, \(c_j=0\) for every \(j=1,\cdots ,N\), that is, \({\tilde{\phi }}=0\), and so (5.11) follows. That concludes the proof. \(\square \)

We are now ready to carry out the reduction for (5.1). That is, we consider the following problem

$$\begin{aligned} Q_{\varepsilon }L_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon =Q_{\varepsilon }l_{\varepsilon ,\varvec{\tau }} +Q_{\varepsilon }R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon , \ x\in {\mathbb {R}}^N. \end{aligned}$$
(5.25)

To this end, we need to estimate \(\Vert l_{\varepsilon ,\varvec{\tau }}\Vert _{\varepsilon }\) and \(\Vert R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \Vert _{\varepsilon }\).

Lemma 5.2

We have

$$\begin{aligned} \Vert l_{\varepsilon ,\varvec{\tau }}\Vert _{\varepsilon }\le C\varepsilon ^{\frac{N}{2}+4+\theta }. \end{aligned}$$

Proof

By definition of \(l_{\varepsilon ,\varvec{\tau }}\), we get

$$\begin{aligned} \langle l_{\varepsilon ,\varvec{\tau }}, \psi \rangle _{\varepsilon } =&\int _{{\mathbb {R}}^N}\left( -\varepsilon ^2V(x)Z\psi +\sum _{i=1}^k\varepsilon ^4H_{i}\psi \right) dx\\&+\int _{{\mathbb {R}}^N}\left( Z^p-\sum _{i=1}^kU_i^p +\varepsilon ^4p\sum _{i=1}^kU_i^{p-1}W_i\right) \psi dx\\ =&l_1+l_2. \end{aligned}$$

It follows from (4.2) that,

$$\begin{aligned} \varepsilon ^2V(x) =&\varepsilon ^4\sum _{i=1}^Na^j_i\left( \frac{x-\xi _j}{\varepsilon }\right) ^2+O(\varepsilon ^2|x-\xi _j|^3)\\ =&\varepsilon ^4\sum _{i=1}^Na^j_i\left( \frac{x-\xi _{j\varepsilon } +\varepsilon ^2\tau _j}{\varepsilon }\right) ^2+O\left( \varepsilon ^5\left| \frac{x-\xi _{j\varepsilon } +\varepsilon ^2\tau _j}{\varepsilon }\right| ^3\right) \\ =&\varepsilon ^4\sum _{i=1}^Na^j_i\left( \frac{x-\xi _{j\varepsilon } }{\varepsilon }\right) ^2+O\left( \varepsilon ^5\left( 1+\left| \frac{x-\xi _{j\varepsilon } }{\varepsilon }\right| ^3\right) \right) . \end{aligned}$$

Therefore,

$$\begin{aligned} l_1=&\int _{{\mathbb {R}}^N}\left( -\varepsilon ^2V(x)Z\psi +\sum _{i=1}^k\varepsilon ^4H_{i}\left( \frac{x-\xi _{j\varepsilon } }{\varepsilon }\right) \psi \right) dx \nonumber \\ =&\int _{{\mathbb {R}}^N}\left[ -\varepsilon ^4\sum _{i=1}^Na^j_i\left( \frac{x-\xi _{j\varepsilon } }{\varepsilon }\right) ^2+O\left( \varepsilon ^5\left( 1+\left| \frac{x-\xi _{j\varepsilon } }{\varepsilon }\right| ^3\right) \right) \right] \nonumber \\&\times \left( \sum _{j=1}^kU_j-\varepsilon _n^4\sum _{j=1}^kW_j\right) \psi dx +\int _{{\mathbb {R}}^N}\sum _{i=1}^k\varepsilon ^4H_{i}\left( \frac{x-\xi _{j\varepsilon }}{\varepsilon }\right) \psi dx \nonumber \\ =&O\left( \int _{{\mathbb {R}}^N}\sum _{i,j=1}^k\varepsilon ^5\left( 1+\left| \frac{x-\xi _{i\varepsilon } }{\varepsilon }\right| ^3\right) U_j|\psi |dx\right. \nonumber \\&\left. +\int _{{\mathbb {R}}^N}\sum _{i,j=1}^k\varepsilon ^9\left( 1+\left| \frac{x-\xi _{i\varepsilon } }{\varepsilon }\right| ^3\right) |W_j||\psi |dx\right) \nonumber \\&+O\left( \int _{{\mathbb {R}}^N}\sum _{j=1}^k\varepsilon ^8|W_j||\psi |dx\right) \nonumber \\ =&O\left( \varepsilon ^{\frac{N}{2}+5}\Vert \psi \Vert _{\varepsilon }\right) . \end{aligned}$$
(5.26)

Next, we estimate \(l_2\). Since

$$\begin{aligned} l_2=&\int _{{\mathbb {R}}^N}\left( Z^p-\sum _{i=1}^kU_i^p +\varepsilon ^4p\sum _{i=1}^kU_i^{p-1}W_i\right) \psi dx\\ =&\int _{{\mathbb {R}}^N}\left[ Z^p-\left( \sum _{i=1}^kU_i\right) ^p-p\left( \sum _{i=1}^kU_i\right) ^{p-1} \left( -\varepsilon ^4\sum _{j=1}^kW_j\right) \right] \psi dx\\&+\int _{{\mathbb {R}}^N}\left[ \left( \sum _{i=1}^kU_i\right) ^p-\sum _{i=1}^kU_i^p\right] \psi dx\\&+\int _{{\mathbb {R}}^N}p\varepsilon ^4\left[ \sum _{i=1}^kU_i^{p-1}W_i-\left( \sum _{i=1}^kU_i\right) ^{p-1} \left( \sum _{j=1}^kW_j\right) \right] \psi dx:=l_{21}+l_{22}+l_{23}. \end{aligned}$$

We next compute \(l_{2i}\) for \(i=1,2,3\), respectively. First of all, using the Hölder inequality, we have

$$\begin{aligned} |l_{21}|\le&C {\left\{ \begin{array}{ll} \int _{{\mathbb {R}}^N}\left| \varepsilon ^4\sum _{j=1}^kW_j\right| ^p|\psi |dx,\ {} &{}\text { if }1<p\le 2,\\ \int _{{\mathbb {R}}^N}\left( \left| \varepsilon ^4\sum _{j=1}^kW_j\right| ^p +\left| \varepsilon ^4\sum _{j=1}^kW_j\right| ^2\left| \sum _{i=1}^kU_i\right| ^{p-2}\right) |\psi |dx, &{}\text { if }p>2, \end{array}\right. } \nonumber \\ =&{\left\{ \begin{array}{ll} O\left( \varepsilon ^{\frac{N}{2}+4p}\Vert \psi \Vert _{\varepsilon }\right) ,\ {} &{}\text { if }1<p\le 2,\\ O\left( \varepsilon ^{\frac{N}{2}+8}\Vert \psi \Vert _{\varepsilon }\right) , &{}\text { if }p>2. \end{array}\right. } \end{aligned}$$
(5.27)

As to \(l_{22}\), we have

$$\begin{aligned} |l_{22}|=&\left| \int _{{\mathbb {R}}^N}\left[ \left( \sum _{i=1}^kU_i\right) ^p-\sum _{i=1}^kU_i^p\right] \psi dx\right| \nonumber \\ =&\left| \left[ \int _{\cup _{l=1}^kB_{\epsilon }(\xi _l)}+\int _{{\mathbb {R}}^N\setminus \cup _{l=1}^kB_{\epsilon }(\xi _l) }\right] \left[ \left( \sum _{i=1}^kU_i\right) ^p-\sum _{i=1}^kU_i^p\right] \psi dx\right| \nonumber \\ \le&C\varepsilon ^{\frac{N}{2}}e^{-\frac{\delta }{\varepsilon }}\Vert \psi \Vert _{\varepsilon }. \end{aligned}$$
(5.28)

In the same way,

$$\begin{aligned} |l_{23}|=O\left( \varepsilon ^{\frac{N}{2}+4}e^{-\frac{\delta }{\varepsilon }}\Vert \psi \Vert _{\varepsilon }\right) . \end{aligned}$$
(5.29)

In conclusion,

$$\begin{aligned} \Vert l_{\varepsilon ,\varvec{\tau }}\Vert _{\varepsilon }\le C\varepsilon ^{\frac{N}{2}+4+\theta }. \end{aligned}$$

\(\square \)

Lemma 5.3

We have

$$\begin{aligned} \Vert R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \Vert _{\varepsilon }\le C\varepsilon ^{N(1-\frac{\min \{2,p\}+1}{2})}\Vert \phi _\varepsilon \Vert _{\varepsilon }^{\min \{2,p\}}. \end{aligned}$$

Proof

For \(1<p\le 2\), then by the mean value Theorem, there exists \(t\in (0,1)\) such that

$$\begin{aligned} R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon =&(Z+\phi _\varepsilon )^p-Z^p-pZ^{p-1}\phi _\varepsilon =p(Z+t\phi _\varepsilon )^{p-1}-pZ^{p-1}\phi _\varepsilon =O(|\phi _\varepsilon |^p). \end{aligned}$$

Thus, from (2.2.46) in [7],

$$\begin{aligned} \left| \int _{{\mathbb {R}}^N}R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \varphi dx\right|&\le C\int _{{\mathbb {R}}^N}|\phi _\varepsilon |^p|\varphi |dx \nonumber \\&\le C \left( \int _{{\mathbb {R}}^N}|\phi _\varepsilon |^{p+1}dx\right) ^{\frac{p}{p+1}} \left( \int _{{\mathbb {R}}^N}|\varphi |^{p+1}dx\right) ^{\frac{1}{p+1}}\nonumber \\&\le C\varepsilon ^{N(1-\frac{p+1}{2})}\Vert \phi _\varepsilon \Vert _{\varepsilon }^p\Vert \varphi \Vert _{\varepsilon }. \end{aligned}$$
(5.30)

Similarly, as for \(p>2\), we get

$$\begin{aligned} \left| \int _{{\mathbb {R}}^N}R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \varphi dx\right| \le C\varepsilon ^{-\frac{N}{2}}\Vert \phi _\varepsilon \Vert _{\varepsilon }^2\Vert \varphi \Vert _{\varepsilon }. \end{aligned}$$
(5.31)

By (5.30) and (5.31), we deduce

$$\begin{aligned} \Vert R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \Vert _{\varepsilon }\le C\varepsilon ^{N(1-\frac{\min \{2,p\}+1}{2})}\Vert \phi _\varepsilon \Vert _{\varepsilon }^{\min \{2,p\}}. \end{aligned}$$

\(\square \)

Based on Lemmas 5.2 and 5.3, we have the following proposition.

Proposition 5.4

For any compact set \(S\subset {\mathbb {R}}^N\), there exists \(\varepsilon _0>0\) and \(C > 0\) such that for any \(\varepsilon \in (0,\varepsilon _0)\) and for any \(\tau _i\in S\) there exists a unique \(\phi _\varepsilon \in K^\perp \) which solves equation (5.25) and

$$\begin{aligned} \Vert \phi _\varepsilon \Vert _{\varepsilon }\le C\varepsilon ^{\frac{N}{2}+4+\theta }. \end{aligned}$$

Proof

By Proposition 5.1, we define

$$\begin{aligned} \phi _\varepsilon =T(\phi _\varepsilon ):=(Q_{\varepsilon }L_{\varepsilon ,\varvec{\tau }})^{-1} (l_{\varepsilon ,\varvec{\tau }} +R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon ), \end{aligned}$$

and by Lemma 5.2,

$$\begin{aligned} \Vert (Q_{\varepsilon }L_{\varepsilon ,\varvec{\tau }})^{-1}l_{\varepsilon ,\varvec{\tau }}\Vert _{\varepsilon } \le C \Vert l_{\varepsilon ,\varvec{\tau }}\Vert _{\varepsilon } \le C\varepsilon ^{\frac{N}{2}+4+\theta }. \end{aligned}$$

Then, we define

$$\begin{aligned} B:=\{\phi _\varepsilon :\phi _\varepsilon \in K^\perp , \Vert \phi _\varepsilon \Vert _{\varepsilon }\le C\varepsilon ^{\frac{N}{2}+4+\theta }\}, \end{aligned}$$

where \(\theta \) is a small positive constant.

Step 1. We claim that T maps B to B. In fact, By Proposition 5.1, Lemma 5.2, and Lemma 5.3, we get

$$\begin{aligned} \Vert T(\phi _\varepsilon )\Vert _{\varepsilon }\le C\Vert l_{\varepsilon ,\varvec{\tau }}\Vert _{\varepsilon } +C\Vert R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon \Vert _{\varepsilon } \le C\varepsilon ^{\frac{N}{2}+4+\theta }. \end{aligned}$$
(5.32)

Step 2. We prove that T is a contraction map. Given \(\phi _1, \phi _2\in B\), then by Proposition 5.1, we have

$$\begin{aligned} \Vert T(\phi _1)-T(\phi _2)\Vert _{\varepsilon }\le C\Vert R_{\varepsilon ,\varvec{\tau }}\phi _1-R_{\varepsilon ,\varvec{\tau }}\phi _2\Vert _{\varepsilon }. \end{aligned}$$

Using the mean value Theorem, for \(t\in (0,1)\),

$$\begin{aligned}&|R_{\varepsilon ,\varvec{\tau }}\phi _1-R_{\varepsilon ,\varvec{\tau }}\phi _2| =|\left( (Z+\phi _1)^p-(Z+\phi _2)^p)\right) -pZ^{p-1}(\phi _1-\phi _2)|\\&\quad =|p\left( (Z+\phi _1+t(\phi _1-\phi _2))^{p-1}-Z^{p-1}\right) (\phi _1-\phi _2)|\\&\quad \le {\left\{ \begin{array}{ll} C(|\phi _1|^{p-1}+|\phi _2|^{p-1})|\phi _1-\phi _2|, &{}\text { if } 1<p\le 2,\\ CZ^{p-2}(|\phi _1|+|\phi _2|)|\phi _1-\phi _2|+C(|\phi _1|^{p-1}+|\phi _2|^{p-1})|\phi _1-\phi _2|, &{}\quad \text { if } p>2. \end{array}\right. } \end{aligned}$$

Therefore, for \(1<p\le 2\), we deduce

$$\begin{aligned}&\left| \int _{{\mathbb {R}}^N}|R_{\varepsilon ,\varvec{\tau }}\phi _1-R_{\varepsilon ,\varvec{\tau }}\phi _2|\varphi dx\right| \\&\quad \le C\left( \int _{{\mathbb {R}}^N}(|\phi _1|+|\phi _2|)^{p+1}dx\right) ^{\frac{p-1}{p+1}} \left( \int _{{\mathbb {R}}^N}|\phi _1-\phi _2|^{p+1}dx\right) ^{\frac{1}{p+1}} \left( \int _{{\mathbb {R}}^N}|\varphi |^{p+1}dx\right) ^{\frac{1}{p+1}}\\&\quad \le C\varepsilon ^{N\frac{1-p}{2}}\left( \Vert \phi _1\Vert _{\varepsilon }^{p-1}+\Vert \phi _2\Vert _{\varepsilon }^{p-1}\right) \Vert \phi _1-\phi _2\Vert _{\varepsilon }\Vert \varphi \Vert _{\varepsilon }\\&\quad \le \frac{1}{2} \Vert \phi _1-\phi _2\Vert _{\varepsilon }\Vert \varphi \Vert _{\varepsilon }. \end{aligned}$$

Similarly, for \(p>2\), we have

$$\begin{aligned} \left| \int _{{\mathbb {R}}^N}|R_{\varepsilon ,\varvec{\tau }}\phi _1-R_{\varepsilon ,\varvec{\tau }}\phi _2|\varphi dx\right| \le \frac{1}{2} \Vert \phi _1-\phi _2\Vert _{\varepsilon }\Vert \varphi \Vert _{\varepsilon }. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert T(\phi _1)-T(\phi _2)\Vert _{\varepsilon }\le \frac{1}{2} \Vert \phi _1-\phi _2\Vert _{\varepsilon }\Vert \varphi \Vert _{\varepsilon }. \end{aligned}$$

Using a contraction mapping Theorem, we conclude that there exists unique \(\phi _\varepsilon \in K^\perp \) satisfying \(\phi _\varepsilon =T(\phi _\varepsilon )\). Thus, by (5.32), we get

$$\begin{aligned} \Vert \phi _\varepsilon \Vert _{\varepsilon }=\Vert T(\phi _\varepsilon )\Vert _{\varepsilon }\le C\varepsilon ^{\frac{N}{2}+4+\theta }. \\ \end{aligned}$$

\(\square \)

By Proposition 5.4, we deduce that

$$\begin{aligned} L_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon -l_{\varepsilon ,\varvec{\tau }} -R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon =\sum _{j=1}^k\sum _{i=1}^Na_{\varepsilon ,i,j}\frac{\partial U_j}{\partial x_i}. \end{aligned}$$
(5.33)

Next, we choose \(\tau _j\) suitably, such that \(a_{\varepsilon ,i,j}= 0\), \(i = 1,\cdots ,N\), \(j = 1,\cdots ,k\). That will conclude the proof.

Proposition 5.5

There exists \(\varepsilon _0>0\) such that for any \(\varepsilon \in (0,\varepsilon _0)\) there exists \(\tau _j\in {\mathbb {R}}^N\) with \(j=1,\cdots ,k\), such that equation (5.33) is satisfied.

Proof

Let us multiply (5.33) by \(\frac{\partial U_j}{\partial x_i}\). On the one hand, by (2.2.20) and (2.2.21) in [7], we get

$$\begin{aligned} \langle L_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon -l_{\varepsilon ,\varvec{\tau }} -R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon ,\frac{\partial U_j}{\partial x_i}\rangle _{\varepsilon }&=\left\langle \sum _{l=1}^k\sum _{m=1}^Na_{\varepsilon ,m,l}\frac{\partial U_l}{\partial x_m},\frac{\partial U_j}{\partial x_i}\right\rangle _{\varepsilon }\nonumber \\&=\varepsilon ^{N-2}(\sigma _{ij}a_{\varepsilon ,i,j}+o(1)). \end{aligned}$$
(5.34)

On the other hand, using \(-\varepsilon ^2\Delta U_j+U_j=U_j^p\), we obtain

$$\begin{aligned}&\langle L_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon -l_{\varepsilon ,\varvec{\tau }} -R_{\varepsilon ,\varvec{\tau }}\phi _\varepsilon ,\frac{\partial U_j}{\partial x_i}\rangle _{\varepsilon }\nonumber \\&\quad =\int _{{\mathbb {R}}^N}\left( \varepsilon ^2\nabla u_\varepsilon \nabla \frac{\partial U_j}{\partial x_i} +(1+\varepsilon ^2V(x))u_\varepsilon \frac{\partial U_j}{\partial x_i} -u_\varepsilon ^p \frac{\partial U_j}{\partial x_i} \right) dx \nonumber \\&\quad =\int _{{\mathbb {R}}^N}\left( \varepsilon ^2\nabla (u_\varepsilon -U_j) \nabla \frac{\partial U_j}{\partial x_i} +\left( u_\varepsilon -U_j\right) \frac{\partial U_j}{\partial x_i} \right) dx \nonumber \\&\qquad +\int _{{\mathbb {R}}^N}\varepsilon ^2V(x)u_\varepsilon \frac{\partial U_j}{\partial x_i}dx +\int _{{\mathbb {R}}^N}\left( U_j^p-u_\varepsilon ^p\right) \frac{\partial U_j}{\partial x_i}dx, \end{aligned}$$
(5.35)

where by [7, Lemma 2.2.2] and \(W_l\in K^\perp \), we have

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\left( \varepsilon ^2\nabla (u_\varepsilon -U_j) \nabla \frac{\partial U_j}{\partial x_i} +\left( u_\varepsilon -U_j\right) \frac{\partial U_j}{\partial x_i} \right) dx \nonumber \\&\quad =\int _{{\mathbb {R}}^N}\left( \varepsilon ^2\nabla \left( \sum _{l\ne j}U_l\right) \nabla \frac{\partial U_j}{\partial x_i} +\left( \sum _{l\ne j}U_l\right) \frac{\partial U_j}{\partial x_i} \right) dx +\Bigg \langle -\varepsilon ^4\sum _{l=1}^kW_l,\frac{\partial U_j}{\partial x_i}\Bigg \rangle _{\varepsilon } \nonumber \\&\quad =O\left( \varepsilon ^N\sum _{l\ne j}e^{-\frac{\delta }{\varepsilon }|\xi _{l\varepsilon }-\xi _{j\varepsilon }|}\right) . \end{aligned}$$
(5.36)

It follows from (4.2) that

$$\begin{aligned}&\frac{\partial }{\partial y_i}\left( V(\varepsilon y+\varepsilon ^2\tau _j+\xi _j)\right) \\&\quad =a_j^i(\varepsilon y^i+\varepsilon ^2\tau _j^i) +\frac{1}{2}\sum _{l,k=1}^N\frac{\partial ^3V(\xi _j)}{\partial x_k\partial x_l\partial x_i}(\varepsilon ^2y_ly_k)+O\left( \varepsilon ^3(1+|y|^3)\right) . \end{aligned}$$

Thus,

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\varepsilon ^2V(x)u_\varepsilon \frac{\partial U_j}{\partial x_i}dx\nonumber \\&\qquad =\int _{{\mathbb {R}}^N}\varepsilon ^2V(x)(Z+\phi _\varepsilon )\frac{\partial U_j}{\partial x_i}dx \nonumber \\&\qquad =\int _{{\mathbb {R}}^N}\varepsilon ^2V(x)\left( U_j-\varepsilon ^4W_j\right) \frac{\partial U_j}{\partial x_i}dx+O\left( \varepsilon ^{N+5+\theta }\right) \nonumber \\&\qquad =\int _{{\mathbb {R}}^N}\varepsilon ^{N+2}V(\varepsilon y+\varepsilon ^2\tau _j+\xi _j)\left( U-\varepsilon ^4W_j\right) \frac{1}{\varepsilon }\frac{\partial U}{\partial y_i}dy+O\left( \varepsilon ^{N+5+\theta }\right) \nonumber \\&\qquad =\int _{{\mathbb {R}}^N}\varepsilon ^{N+1}V(\varepsilon y+\varepsilon ^2\tau _j+\xi _j)U\frac{\partial U}{\partial y_i}dy+O\left( \varepsilon ^{N+5}\right) \nonumber \\&\qquad =\int _{{\mathbb {R}}^N}\varepsilon ^{N+1}V(\varepsilon y+\varepsilon ^2\tau _j+\xi _j)\frac{\partial }{\partial y_i}\left( \frac{1}{2}U^2\right) dy+O\left( \varepsilon ^{N+5}\right) \nonumber \\&\qquad =-\frac{1}{2}\int _{{\mathbb {R}}^N}\varepsilon ^{N+2}\frac{\partial }{\partial y_i}\left( V(\varepsilon y+\varepsilon ^2\tau _j+\xi _j)\right) U^2dy+O\left( \varepsilon ^{N+5}\right) \nonumber \\&\qquad =-\frac{1}{2}\varepsilon ^{N+4}\left( a_j^i\tau _j^i\int _{{\mathbb {R}}^N}U^2dx +\frac{1}{2N}\sum _{l,k=1}^N\frac{\partial ^3V(\xi _j)}{\partial y_k\partial y_l\partial y_i}\int _{{\mathbb {R}}^N}|x|^2U^2dx\right) \nonumber \\&\qquad +O\left( \varepsilon ^{N+5}\right) . \end{aligned}$$
(5.37)

For \(1<p\le 2\), we have

$$\begin{aligned} u_\varepsilon ^p-U_j^p=pU_j^{p-1}\left( \sum _{l\ne j}U_l-\varepsilon ^4\sum _{l=1}^kW_l\right) +O\left( \left( \sum _{l\ne j}U_l-\varepsilon ^4\sum _{l=1}^kW_l\right) ^p\right) . \end{aligned}$$

Then, from [7, Lemma 2.2.2], for \(l\ne j\),

$$\begin{aligned} p\int _{{\mathbb {R}}^N}U_j^{p-1}\frac{\partial U_j}{\partial x_i}U_ldx =O\left( \varepsilon ^Ne^{-\frac{\delta }{\varepsilon }|\xi _{l\varepsilon }-\xi _{j\varepsilon }|}\right) , \end{aligned}$$

and

$$\begin{aligned} \int _{{\mathbb {R}}^N}U_l^{p}\frac{\partial U_j}{\partial x_i}dx =O\left( \varepsilon ^Ne^{-\frac{\delta }{\varepsilon }|\xi _{l\varepsilon }-\xi _{j\varepsilon }|}\right) . \end{aligned}$$

Similarly,

$$\begin{aligned} p\varepsilon ^4\int _{{\mathbb {R}}^N}U_j^{p-1}\frac{\partial U_j}{\partial x_i}W_ldx=O\left( \varepsilon ^Ne^{-\frac{\delta }{\varepsilon }|\xi _{l\varepsilon }-\xi _{j\varepsilon }|}\right) . \end{aligned}$$

In terms of \(W_j\in K^\perp \), we have

$$\begin{aligned} p\varepsilon ^4\int _{{\mathbb {R}}^N}U_j^{p-1}\frac{\partial U_j}{\partial x_i}W_jdx&=\varepsilon ^4\int _{{\mathbb {R}}^N}\left( -\varepsilon ^2\Delta \frac{\partial U_j}{\partial x_i}+\frac{\partial U_j}{\partial x_i}\right) W_jdx\\&=\varepsilon ^4\langle \frac{\partial U_j}{\partial x_i},W_j\rangle _{\varepsilon } =0. \end{aligned}$$

Since W is even and \(\partial _jU\) is odd, we see

$$\begin{aligned} \varepsilon ^{4p}\int _{{\mathbb {R}}^N}W_j^p\frac{\partial U_j}{\partial x_i}dx =&\varepsilon ^{4p}\left( \int _{B_{\varepsilon R}(\xi _{j\varepsilon })}+\int _{{\mathbb {R}}^N\setminus B_{\varepsilon R}(\xi _{j\varepsilon })}\right) W_j^p\frac{\partial U_j}{\partial x_i}dx\\ =&\varepsilon ^{N+4p-1}\left( \int _{B_{R}(0)}+\int _{{\mathbb {R}}^N\setminus B_{ R}(0)}\right) W^p\frac{\partial U}{\partial x_i}dx\\ =&\varepsilon ^{N+4p-1}\int _{{\mathbb {R}}^N\setminus B_{ R}(0)}W^p\frac{\partial U}{\partial x_i}dx =O\left( \varepsilon ^{N+4p-1}e^{-\frac{\delta }{\varepsilon }}\right) . \end{aligned}$$

In conclusion, for \(1<p\le 2\),

$$\begin{aligned} \int _{{\mathbb {R}}^N}\left( U_j^p-u_\varepsilon ^p\right) \frac{\partial U_j}{\partial x_i}dx=O\left( \varepsilon ^{N}e^{-\frac{\varrho }{\varepsilon }}\right) . \end{aligned}$$
(5.38)

In the same way, we can get the similar result for the case \(p>2\). Then by (5.34)-(5.38), we get

$$\begin{aligned} \sigma _{ij}a_{\varepsilon ,i,j}=-\frac{1}{2}\varepsilon ^{6}\left( a_j^i\tau _j^i\int _{{\mathbb {R}}^N}U^2dx +\frac{1}{2N}\sum _{l,k=1}^N\frac{\partial ^3V(\xi _j)}{\partial y_k\partial y_l\partial y_i}\int _{{\mathbb {R}}^N}|x|^2U^2dx+o(1)\right) . \end{aligned}$$

Since \(\sigma _{ij}\), \(\int _{{\mathbb {R}}^N}U^2dx\) and \(\int _{{\mathbb {R}}^N}|x|^2U^2dx\) are positive constants, \(a_j^i\ne a_k^l\) for \(j\ne k\), \(i\ne l\), this implies that if \(\varepsilon \rightarrow 0\), there exists \(\tau _j^i={\tau _j^i}(\varepsilon )\) such that the right hand of the above identity is zero, thus \(a_{\varepsilon ,i,j}=0\) for every \(i=1,\cdots ,N\), \(j=1,\cdots ,k\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Huang, X. Normalized Multi-peak Solutions to Nonlinear Elliptic Problems. J Geom Anal 34, 66 (2024). https://doi.org/10.1007/s12220-023-01514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01514-4

Keywords

Mathematics Subject Classification

Navigation