Skip to main content
Log in

On existence of multiple normalized solutions to a class of elliptic problems in whole \({\mathbb {R}}^N\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of multiple normalized solutions to the following class of elliptic problems

$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u=\lambda u+h(\epsilon x)f(u), \quad \hbox {in}\; {\mathbb {R}}^N,\\&\int \limits _{{\mathbb {R}}^{N}}|u|^{2}\hbox {d}x=a^{2}, \end{aligned} \right. \end{aligned}$$

where \(a,\epsilon >0\), \(\lambda \in {\mathbb {R}}\) is an unknown parameter that appears as a Lagrange multiplier, \(h:{\mathbb {R}}^N \rightarrow [0,\infty )\) is a continuous function, and f is continuous function with \(L^2\)-subcritical growth. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of h when \(\epsilon \) is small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O.: Existence of Multi-peak of solutions for a class of qualinear problems in \({\mathbb{R}}^N\). Topol. Methods Nonlinear Anal. 38, 307–332 (2011)

    MathSciNet  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M.: Existence and multiplicity of positive solutions to a p-Laplacian equation in \({\mathbb{R}}^N\). Differ. Integral Equ. 19(2), 143–162 (2006)

    MATH  Google Scholar 

  3. Alves, C.O., Figueiredo, G.M.: Multiplicity of positive solutions for a quasilinear problem in\({\mathbb{R}}^N\) via penalization method. Adv. Nonlinear Stud. 5, 551–572 (2005)

    Article  MathSciNet  Google Scholar 

  4. Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R}}^{N}\). Calc. Var. Part. Differ. Equ. https://doi.org/10.1007/s00526-021-02123-1

  5. Alves, C.O., Ji, C., Miyagaki, O.H.: Multiplicity of normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R}}^{N}\). arXiv:2103.07940v2 (2021)

  6. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclasical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  Google Scholar 

  7. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R}}^3\). J. Math. Pures Appl. (9) 106(4), 583–614 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bartsch, T., Molle, R., Rizzi, M., Verzini, G.: Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Part. Differ. Equ. 46(9), 1729–1756 (2021)

    Article  Google Scholar 

  9. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Part. Differ. Equ. 58(1), art 22 (2019)

    Article  Google Scholar 

  10. Bartsch, T., De Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100, 75–83 (2013)

    Article  MathSciNet  Google Scholar 

  11. Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct. Anal. 280, 108989 (2021)

  12. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. (3) 107(2), 303–339 (2013)

  13. Cao, D.M., Noussair, E.S.: Multiplicity of positive and nodal solutions for nonlinear elliptic problem in \({\mathbb{R}}^{N}\). Ann. Inst. Henri Poincaré 13(5), 567–588 (1996)

    Article  MathSciNet  Google Scholar 

  14. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003). ISBN: 0-8218-3399-5

  15. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  Google Scholar 

  16. Cheng, X., Miao, C.X., Zhao, L.F.: Global well-posedness and scattering for nonlinear Schödinger equations with combined nonlinearities in the radial case. J. Differ. Equ. 261, 2881–2934 (2016)

    Article  Google Scholar 

  17. Cingolani, S., Jeanjean, L.: Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger-Poisson system. SIAM J. Math. Anal. 51(4), 3533–3568 (2019)

    Article  MathSciNet  Google Scholar 

  18. del Pino, M., Felmer, P.L.: Local Mountain Pass for semilinear elliptic problems in unbounded domains. Cal. Var. Part. Differ. Equ. 4, 121–137 (1996)

    Article  Google Scholar 

  19. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equations with bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 ed. In: Classics in Mathematics. Springer, Berlin (2001)

  21. Gou, T.X., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31(5), 2319–2345 (2018)

    Article  MathSciNet  Google Scholar 

  22. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Part. Differ. Equ. 21(5–6), 787–820 (1996)

    Article  Google Scholar 

  23. Hirata, J., Tanaka, K.: Nonlinear scalar field equations with \(L^2\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19(2), 263–290 (2019)

    Article  MathSciNet  Google Scholar 

  24. Ikoma, N., Tanaka, K.: A note on deformation argument for \(L^2\) normalized solutions of nonlinear Schrödinger equations and systems. Adv. Differ. Equ. 24, 609–646 (2019)

    MATH  Google Scholar 

  25. Ikoma, N., Miyamoto, Y.: Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities. Calc. Var. Part. Differ. Equ. 59(2), 48 (2020)

    Article  Google Scholar 

  26. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  27. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation arXiv:2008.12084 (2020)

  28. Jeanjean, L., Lu, S.S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32(12), 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  29. Jeanjean, L., Lu, S.S.: A mass supercritical problem revisited. Calc. Var. Part. Differ. Equ. 59, art 174, (2020)

  30. Jeanjean, L., Lu, S.S.: On global minimizers for a mass constrained problem, arXiv:2108.04142v2

  31. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger equations. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02228-0

  32. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation. J. Differ. Equ. 303, 277–325 (2021)

    Article  Google Scholar 

  33. Mederski, J., Schino, J.: Least energy solutions to a cooperative system of Schrödinger equations with prescribed \(L^2\)-bounds: at least \(L^2\)-critical growth. Calc. Var. Part. Differ. Equ. (to appear)

  34. Miao, C.X., Xu, G.X., Zhao, L.F.: The dynamics of the 3D radial NLS with the combined terms. Commun. Math. Phys. 318(3), 767–808 (2013)

    Article  MathSciNet  Google Scholar 

  35. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 10441072 (2019)

    Article  Google Scholar 

  36. Oh, Y.J.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class \((V)_{a}\). Commun. Part. Differ. Equ. 13, 1499–1519 (1988)

    Article  Google Scholar 

  37. Oh, Y.J.: On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential with potentials. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  Google Scholar 

  38. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  39. Shibata, M.: A new rearrangement inequality and its application for \(L^{2}\)-constraint minimizing problems. Math. Z. 287, 341–359 (2017)

    Article  MathSciNet  Google Scholar 

  40. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    Article  MathSciNet  Google Scholar 

  41. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610 (2020)

  42. Stefanov, A.: On the normalized ground states of second order PDE’s with mixed power non-linearities. Commun. Math. Phys. 369(3), 929–971 (2019)

    Article  MathSciNet  Google Scholar 

  43. Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. 45, 169–192 (1982)

    Article  MathSciNet  Google Scholar 

  44. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Part. Differ. Equ. 32(7–9), 1281–1343 (2007)

    Article  Google Scholar 

  45. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 53, 229–244 (1993)

    Article  Google Scholar 

  46. Willem, M.: Minimax Theorems. Birkhauser, Boston (1996)

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Louis Jeanjean for useful remarks on a preliminary version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. O. Alves was partially supported by CNPq/Brazil 304804/2017-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O. On existence of multiple normalized solutions to a class of elliptic problems in whole \({\mathbb {R}}^N\). Z. Angew. Math. Phys. 73, 97 (2022). https://doi.org/10.1007/s00033-022-01741-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01741-9

Keywords

Mathematics Subject Classification

Navigation