Skip to main content
Log in

Non-local Equations and Optimal Sobolev Inequalities on Compact Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper deals with the theory of fractional Sobolev spaces on a compact Riemannian manifold (Mg). Our first main result shows that the fractional Sobolev spaces \(W^{s,p}(M)\) introduced by Guo et al. (Electron J Differ Equ 2018(156): 1–17, 2018) coincide with the classical Triebel–Lizorkin spaces (which in turn coincide with the Besov spaces). As an application, we study a non-local elliptic equation of the form

$$\begin{aligned} {\mathcal {L}}_{{\mathcal {K}}}u + h|u |^{p-2}u = f|u |^{q-2}u, \end{aligned}$$
(1)

where the operator \({\mathcal {L}}_{K} u\) is an integro-differential operator a little more general than the fractional Laplacian, defined on \(W^{s,p}(M)\). We use the Mountain Pass Theorem to show an existence result under a coercivity condition when we have a sub-critical non-linearity on the right-hand side of the Eq. (1). Our second main result is a Sobolev inequality in the critical range with an optimal constant for the fractional Sobolev spaces \(W^{s,2}(M)\). This inequality gives us a sufficient existence condition for (1) with \(p=2\) and \(q=2^*=\frac{2n}{n-2s}\) the fractional critical Sobolev exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alonso-Oran, D., Cordoba, A., Martinez, A.D.: Integral representation for fractional Laplace–Beltrami operators. Adv. Math. 328, 436–445 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aubin, T.: Équations différentielles non linéaires et probleme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 9(55), 269–296 (1976)

    Google Scholar 

  3. Bisci, G.M., Rădulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, vol. 162. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  4. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations, pp. 439–455 (2001)

  5. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s\nearrow 1\) and applications. J. Anal. Math. 87(1), 77–101 (2002)

    Article  MathSciNet  Google Scholar 

  6. Brasco, L., Lindgren, E.: Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case. Adv. Math. 304, 300–354 (2017)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. SMR 398, 2 (1983)

    Google Scholar 

  8. Bruno, T., Peloso, M.M., Vallarino, M.: “Besov and Triebel–Lizorkin spaces on Lie groups." Math Ann. 377: 335–377 (2020)

  9. Caffarelli, L.: Non-local diffusions, drifts and games. In: Nonlinear partial differential equations, pp. 37–52. (Springer, 2012)

  10. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L., Silvestre, L.: Reglarity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62, 597–638 (2009)

    Article  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Ration. Mech. Anal. 200, 59–88 (2011)

    Article  MathSciNet  Google Scholar 

  13. Caffarelli, L., Silvestre, L.: The Evans–Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174, 1163–1187 (2011)

    Article  MathSciNet  Google Scholar 

  14. Chang, S.-Y.A., Gonzalez, M.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MathSciNet  Google Scholar 

  15. Chen, W., Li, C., Biao, O.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59(3), 330–343 (2006)

    Article  MathSciNet  Google Scholar 

  16. De Nápoli, P.L., Stinga, P.R.: Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups. arXiv preprint arXiv:1709.00448 (2017)

  17. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  18. Djadli, Z., Hebey, E., Ledoux, M.: Paneitz-type operators and applications. Duke Math. J. 104(1), 129–169 (2000)

    Article  MathSciNet  Google Scholar 

  19. Edmunds, D.E., Evans, W.D.: Fractional Sobolev Spaces and Inequalities, vol. 230. Cambridge University Press, Cambridge (2022)

    Book  Google Scholar 

  20. Fernández Bonder, J., Salort, A., Vivas, H.: Interior and up to the boundary regularity for the fractional \(g-\)Laplacian: the convex case. Nonlinear Anal. 223, 113060 (2022)

    Article  MathSciNet  Google Scholar 

  21. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430 (2008)

    Article  MathSciNet  Google Scholar 

  22. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi" Séminaire Goulaouic-Schwartz", pp. 1–14 (2003)

  23. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009)

    Article  MathSciNet  Google Scholar 

  24. Guo, L., Zhang, B., Zhang, Y.: Fractional p-Laplacian equations on Riemannian manifolds. Electron. J. Differ. Equ. 2018(156), 1–17 (2018)

    MathSciNet  Google Scholar 

  25. Hebey, E.: Variational methods and elliptic equations in Riemannian geometry workshop on recent trends in nonlinear variational problems. Notes from lectures at ICTP (2003)

  26. Iannizzotto, A., Mosconi, S., Squassina, M.: Existence theorems of the fractional Yamabe problem. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kim, S., Musso, M., Wei, J.: Existence theorems of the fractional Yamabe problem. Anal. PDE 11(1), 75–113 (2017)

    Article  MathSciNet  Google Scholar 

  28. Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Equ. 55(3), 63 (2016)

    Article  MathSciNet  Google Scholar 

  29. Kreuml, A., Mordhorst, O.: Fractional Sobolev norms and BV functions on manifolds. Nonlinear Anal. 187, 450–466 (2019)

    Article  MathSciNet  Google Scholar 

  30. María del Mar, G.N., Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. Anal. PDE 6(7), 1535–1576 (2013)

  31. Palatucci, G.: The dirichlet problem for the p-fractional Laplace equation. Nonlinear Anal. 177, 699–732 (2018)

    Article  MathSciNet  Google Scholar 

  32. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis-theory and Methods. Springer, Berlin (2019)

    Book  Google Scholar 

  33. Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60, 3–26 (2016)

    Article  MathSciNet  Google Scholar 

  34. Ros-Oton, X., Serra, J.: Regularity theory for general stable operators. J. Differ. Equ. 260, 8675–8715 (2016)

    Article  MathSciNet  Google Scholar 

  35. Servadei, R.: The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2(3), 235–270 (2013)

    MathSciNet  Google Scholar 

  36. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. A 33(5), 2105 (2013)

    Article  MathSciNet  Google Scholar 

  37. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  38. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 60(1), 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  39. Triebel, H.: Theory of Function Spaces. Birkhàuser Verlag, Basel (1983)

    Book  Google Scholar 

  40. Triebel, H.: Spaces of Besov–Hardy–Sobolev type on complete Riemannian manifolds. Ark. Mat. 24(1–2), 299–337 (1985)

    Article  MathSciNet  Google Scholar 

  41. Triebel, H.: Characterizations of function spaces on a complete Riemannian manifold with bounded geometry. Math. Nachr. 130(1), 321–346 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by ANID (Agencia Nacional de Investigación y Desarrollo) Fondecyt Project no 3200422.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to Carolina Ana Rey.

Ethics declarations

Conflict of interest

Not applicable.

Ethics Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey, C.A., Saintier, N. Non-local Equations and Optimal Sobolev Inequalities on Compact Manifolds. J Geom Anal 34, 17 (2024). https://doi.org/10.1007/s12220-023-01451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01451-2

Keywords

Mathematics Subject Classification

Navigation