Skip to main content
Log in

Complete Metrics with Constant Fractional Higher Order Q-Curvature on the Punctured Sphere

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This manuscript is devoted to constructing complete metrics with constant higher fractional curvature on punctured spheres with finitely many isolated singularities. Analytically, this problem is reduced to constructing singular solutions for a conformally invariant integro-differential equation that generalizes the critical GJMS problem. Our proof follows the earlier construction in Ao et al. (Math Ann 369:109–151, 2017), based on a gluing method, which we briefly describe. Our main contribution is to provide a unified approach for fractional and higher order cases. This method relies on proving Fredholm properties for the linearized operator around a suitably chosen approximate solution. The main challenge in our approach is that the solutions to the related blow-up limit problem near isolated singularities need to be fully classified; hence we are not allowed to use a simplified ODE method. To overcome this issue, we approximate solutions near each isolated singularity by a family of half-bubble tower solutions. Then, we reduce our problem to solving an (infinite-dimensional) Toda-type system arising from the interaction between the bubble towers at each isolated singularity. Finally, we prove that this system’s solvability is equivalent to the existence of a balanced configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y.: Large \(N\) field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000)

    MathSciNet  Google Scholar 

  2. Andrade, J.H., Caju, R., do Ó, J.M., Ratzkin, J., Silva Santos, A.: Constant \(Q\)-curvature metrics with Delaunay ends: the nondegenerate case, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2023)

  3. Andrade, J.H., do Ó, J.M., Ratzkin, J., Wei, J.: Compactness of singular solutions to the sixth order GJMS equation. arXiv:2302.05770 [math.DG] (2023)

  4. Andrade, J.H., Piccione, P., Wei, J.: Nonuniqueness results for constant sixth order Q-curvature metrics on Einstein manifolds. arXiv:2306.00679 [math.DG] (2023)

  5. Andrade, J.H., Wei, J.: Classification for positive singular solutions to critical sixth order equations. arXiv:2210.04376 [math.AP] (2022)

  6. Ao, W., Chan, H., DelaTorre, A., Fontelos, M.A., González, Md.M., Wei, J.: On higher-dimensional singularities for the fractional Yamabe problem: a nonlocal Mazzeo-Pacard program. Duke Math. J. 168, 3297–3411 (2019)

    MathSciNet  Google Scholar 

  7. Ao, W., Chan, H., González, M.D.M., Wei, J.: Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular sets. Calc. Var. Partial Differ. Equ. 57 (2018) Paper No. 149, 25

  8. Ao, W., DelaTorre, A., González, Md.M., Wei, J.: A gluing approach for the fractional Yamabe problem with isolated singularities. J. Reine Angew. Math. 763, 25–78 (2020)

    MathSciNet  Google Scholar 

  9. Ao, W., González, Md.M., Hyder, A., Wei, J.: Removability of singularities and superharmonicity for some fractional Laplacian equations. Indiana Univ. Math. J. 71, 735–766 (2022)

    MathSciNet  Google Scholar 

  10. Ao, W., Musso, M., Wei, J.: On spikes concentrating on line-segments to a semilinear Neumann problem. J. Differ. Equ. 251, 881–901 (2011)

    MathSciNet  Google Scholar 

  11. Aviles, P., McOwen, R.C.: Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds. Duke Math. J. 56, 395–398 (1988)

    MathSciNet  Google Scholar 

  12. Bettiol, R.G., González, M.D.M., Maalaoui, A.: Multiplicity of singular solutions to the fractional Yamabe problem on spheres. arXiv:2302.11073 [math.DG] (2023)

  13. Bettiol, R.G., Piccione, P., Santoro, B.: Bifurcation of periodic solutions to the singular Yamabe problem on spheres. J. Differ. Geom. 103, 191–205 (2016)

    MathSciNet  Google Scholar 

  14. Bettiol, R.G., Piccione, P., Sire, Y.: Nonuniqueness of conformal metrics with constant \(Q\)-curvature. Int. Math. Res. Not. IMRN 6967–6992 (2021)

  15. Byde, A.: Gluing theorems for constant scalar curvature manifolds. Indiana Univ. Math. J. 52, 1147–1199 (2003)

    MathSciNet  Google Scholar 

  16. Caffarelli, L., Jin, T., Sire, Y., Xiong, J.: Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities. Arch. Ration. Mech. Anal. 213, 245–268 (2014)

    MathSciNet  Google Scholar 

  17. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    MathSciNet  Google Scholar 

  18. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    MathSciNet  Google Scholar 

  19. Case, J.S., Lin, Y.-J., Yuan, W.: Conformally variational Riemannian invariants. Trans. Am. Math. Soc. 371, 8217–8254 (2019)

    MathSciNet  Google Scholar 

  20. Case, J.S., Lin, Y.-J., Yuan, W.: Some constructions of formally self-adjoint conformally covariant polydifferential operators. Adv. Math. 401 (2022) Paper No. 108312, 50

  21. Case, J.S., Malchiodi, A.: A factorization of the GJMS operators of a special Einstein product, in preparation (2023)

  22. Chang, S.-Y.A., González, Md.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    MathSciNet  Google Scholar 

  23. Chen, W., Li, C.: Methods on Nonlinear Elliptic Equations, AIMS Series on Differential Equations & Dynamical Systems, vol. 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO (2010)

  24. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    MathSciNet  Google Scholar 

  25. Dávila, J., del Pino, M., Sire, Y.: Nondegeneracy of the bubble in the critical case for nonlocal equations. Proc. Am. Math. Soc. 141, 3865–3870 (2013)

    MathSciNet  Google Scholar 

  26. DelaTorre, A., del Pino, M., González, Md.M., Wei, J.: Delaunay-type singular solutions for the fractional Yamabe problem. Math. Ann. 369, 597–626 (2017)

    MathSciNet  Google Scholar 

  27. DelaTorre, A., González, Md.M.: Isolated singularities for a semilinear equation for the fractional Laplacian arising in conformal geometry. Rev. Mat. Iberoam. 34, 1645–1678 (2018)

    MathSciNet  Google Scholar 

  28. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  Google Scholar 

  29. Finn, D.L., McOwen, R.C.: Singularities and asymptotics for the equation \(\Delta _gu-u^q=Su\). Indiana Univ. Math. J. 42, 1487–1523 (1993)

    MathSciNet  Google Scholar 

  30. Frank, R.L., König, T.: Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent. Anal. PDE 12, 1101–1113 (2019)

    MathSciNet  Google Scholar 

  31. González, Md.M., Mazzeo, R., Sire, Y.: Singular solutions of fractional order conformal Laplacians. J. Geom. Anal. 22, 845–863 (2012)

    MathSciNet  Google Scholar 

  32. Graham, C.R., Jenne, R., Mason, L.J., Sparling, G.A.J.: Conformally invariant powers of the Laplacian. I. Existence. J. Lond. Math. Soc. (2) 46, 557–565 (1992)

    MathSciNet  Google Scholar 

  33. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)

    MathSciNet  Google Scholar 

  34. Hyder, A.: Structure of conformal metrics on \({\mathbb{R}}^n\) with constant \(Q\)-curvature. Differ. Integral Equ. 32, 423–454 (2019)

    Google Scholar 

  35. Hyder, A., Sire, Y.: Singular solutions for the constant \(Q\)-curvature problem. arXiv:1911.11891 [math.AP] (2019)

  36. Jin, T., Li, Y., Xiong, J.: The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369, 109–151 (2017)

    MathSciNet  Google Scholar 

  37. Jin, T., Xiong, J.: Asymptotic symmetry and local behavior of solutions of higher order conformally invariant equations with isolated singularities. Ann. Inst. H. Poincaré Anal, Non Linéaire (2020)

  38. Kapouleas, N.: Compact constant mean curvature surfaces in Euclidean three-space. J. Differ. Geom. 33, 683–715 (1991)

    MathSciNet  Google Scholar 

  39. Kim, S., Wei, J.: Sharp quantitative stability estimates for critical points of fractional Sobolev inequalities, In preparation (2023)

  40. Korevaar, N., Mazzeo, R., Pacard, F., Schoen, R.: Refined asymptotics for constant scalar curvature metrics with isolated singularities. Invent. Math. 135, 233–272 (1999)

    MathSciNet  Google Scholar 

  41. Kusner, R., Mazzeo, R., Pollack, D.: The moduli space of complete embedded constant mean curvature surfaces. Geom. Funct. Anal. 6, 120–137 (1996)

    MathSciNet  Google Scholar 

  42. Li, Y., Xiong, J.: Compactness of conformal metrics with constant \(Q\)-curvature. I. Adv. Math. 345, 116–160 (2019)

    MathSciNet  Google Scholar 

  43. Loewner, C., Nirenberg, L.: Partial Differential Equations Invariant Under Conformal or Projective Transformations, Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers), pp. 245–272. Academic Press, New York (1974)

  44. Malchiodi, A.: Some new entire solutions of semilinear elliptic equations on \({\mathbb{R}}^n\). Adv. Math. 221, 1843–1909 (2009)

    MathSciNet  Google Scholar 

  45. Maldacena, J.: The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    MathSciNet  Google Scholar 

  46. Mazzeo, R., Pacard, F.: A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differ. Geom. 44, 331–370 (1996)

    MathSciNet  Google Scholar 

  47. Mazzeo, R., Pacard, F.: Constant scalar curvature metrics with isolated singularities. Duke Math. J. 99, 353–418 (1999)

    MathSciNet  Google Scholar 

  48. Mazzeo, R., Pacard, F.: Constant mean curvature surfaces with Delaunay ends. Commun. Anal. Geom. 9, 169–237 (2001)

    MathSciNet  Google Scholar 

  49. Mazzeo, R., Pollack, D., Uhlenbeck, K.K.: Moduli spaces of singular Yamabe metrics. J. Am. Math. Soc. 9, 303–344 (1996)

    MathSciNet  Google Scholar 

  50. Mazzeo, R., Smale, N.: Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere. J. Differ. Geom. 34, 581–621 (1991)

    MathSciNet  Google Scholar 

  51. Ngô, Q.A., Ye, D.: Existence and non-existence results for the higher order Hardy-Hénon equations revisited. J. Math. Pures Appl. (9) 163, 265–298 (2022)

    MathSciNet  Google Scholar 

  52. Santos, A.S.: A construction of constant scalar curvature manifolds with Delaunay-type ends. Ann. Henri Poincaré 10, 1487–1535 (2010)

    MathSciNet  Google Scholar 

  53. Schoen, R.: The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Commun. Pure Appl. Math. 41, 317–392 (1988)

    MathSciNet  Google Scholar 

  54. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313, 207–228 (1999)

    MathSciNet  Google Scholar 

  55. Witten, E.: Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was finished when the first-named author held a Post-doctoral position at the University of British Columbia, whose hospitality he would like to acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Andrade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by São Paulo Research Foundation (FAPESP) #2020/07566-3 and #2021/15139-0 and Natural Sciences and Engineering Research Council of Canada (NSERC) #RGPIN-2018-03773.

Appendices

Appendix A: Estimates on the Bubble-Towers Interactions

In this appendix, we quote some important integrals in our proof. The following expressions may be found in [8, Appendix 7] for \(\sigma \in {\mathbb {R}}_+\). Let \(\lambda _1,\lambda _2\lambda _3>0\) and \(x_1,x_2\in {\mathbb {R}}^n\) with \(x\ne 0\), we define

$$\begin{aligned} U_1:=U_{0,\lambda _1}, \quad U_2:=U_{0,\lambda _2}, \quad {\textrm{and}} \quad U_3:=U_{x,\lambda _3}, \end{aligned}$$

where \(w_{x_0,\lambda }\) is given by (4.4). We also recall

$$\begin{aligned} \gamma _{\sigma }:=\frac{n-2\sigma }{2} \quad {\textrm{and}} \quad \gamma _{\sigma }^{\prime }:=\frac{n+2\sigma }{2} \end{aligned}$$

to be the Fowler rescaling exponent and its Lebesgue conjugate, respectively.

In what follows, we use the constants below:

$$\begin{aligned} A_1= & {} \frac{(n+2 \sigma )(n-2 \sigma )}{n} \int _{{\mathbb {R}}^n}\left( {|x|^{2\gamma _{\sigma }}\left( 1+|x|^2\right) ^{\gamma _{\sigma }^{\prime }}}+1\right) ^{-1} \textrm{d}x>0, \end{aligned}$$
(A.1)
$$\begin{aligned} A_2= & {} \frac{n+2 \sigma }{2} \int _{{\mathbb {R}}^n} {(|x|^2-1)}\left( 1+|x|^2\right) ^{-\gamma _{\sigma }-1}\textrm{d}x>0, \end{aligned}$$
(A.2)

and

$$\begin{aligned} A_3=-\frac{(n-2 \sigma )^2}{n} \int _{{\mathbb {R}}^n} {|x|^2}\left( 1+|x|^2\right) ^{-\gamma _{\sigma }-1} \textrm{d}x<0 . \end{aligned}$$
(A.3)

Lemma A.1

For any \(\lambda _1,\lambda _2>0\). It holds

$$\begin{aligned} \int _{{\mathbb {R}}^n} f_{\sigma }^{\prime }(U_1) U_2 {\partial _{\lambda _1} U_1} \textrm{d}x=\frac{1}{\lambda _1} \Psi \left( \left| \log \frac{\lambda _2}{\lambda _1}\right| \right) \frac{\log \frac{\lambda _2}{\lambda _1}}{\left| \log \frac{\lambda _2}{\lambda _1}\right| }, \end{aligned}$$

where

$$\begin{aligned} \Psi (\ell )=e^{-\gamma _{\sigma } \ell }(1+\textrm{o}(1)) \quad {\textrm{as}} \quad \ell \rightarrow +\infty \end{aligned}$$

with

$$\begin{aligned} \Psi (\ell ):=\int _{{\mathbb {R}}} f_{\sigma }^{\prime }(v_{\textrm{sph}}(t)) v_{\textrm{sph}}(t+\ell ) v^{\prime }(t) \textrm{d}t. \end{aligned}$$
(A.4)

Proof

See [8, Lemma 7.1]. \(\square \)

Lemma A.2

If \(\lambda _3={\mathcal {O}}(\lambda _1)\), then the following estimates hold

$$\begin{aligned} \int _{{\mathbb {R}}^n} f_{\sigma }^{\prime }(U_1) U_3 \partial _{\lambda _1} U_1 \textrm{d}x=A_2 |x_2|^{2 \sigma -n}\frac{\left( \lambda _1 \lambda _3\right) ^{\gamma _{\sigma }}}{\lambda _1}\left( 1+{\mathcal {O}}\left( \lambda _1\right) ^2\right) \end{aligned}$$

and

$$\begin{aligned} \int _{{\mathbb {R}}^n} f_{\sigma }^{\prime }(U_1) U_3 \partial _{x_\ell } U_1 \textrm{d}x=A_3 {x_\ell }{|x|^{2 \sigma -n-2}}\left( \lambda _1 \lambda _3\right) ^{\gamma _{\sigma }}\left( 1+{\mathcal {O}}\left( \lambda _1^2\right) \right) \quad {\textrm{for}} \quad \ell \in \{0,\dots ,n\}. \end{aligned}$$

Proof

See [8, Lemma 7.2]. \(\square \)

Lemma A.3

Let \(\lambda _1,\lambda _2>0\) and \(a\in {\mathbb {R}}^n\). If \(|a| \leqslant \max \left\{ \lambda _1^2, \lambda _2^2\right\} \ll 1\) and \(\min \left\{ \frac{\lambda _1}{\lambda _2}, \frac{\lambda _2}{\lambda _1}\right\} \ll 1\), then the following estimates holds

$$\begin{aligned}&\int _{{\mathbb {R}}^n} (\partial _a U_{a,\lambda _1}^{\gamma _{\sigma ^{\prime }}} )U_{0,\lambda _2}^{\gamma _{\sigma }} \textrm{d}x=-A_0 c_{\lambda _1,\lambda _2}C_{\lambda _1,\lambda _2}+c_{\lambda _1,\lambda _2}{\mathcal {O}}\left( C_{\lambda _1,\lambda _2}^2+c_{\lambda _1,\lambda _2}^2C_{\lambda _1,\lambda _2}^2\right) , \end{aligned}$$
(A.5)

where

$$\begin{aligned} c_{\lambda _1,\lambda _2}=\min \left\{ \left( \frac{\lambda _1}{\lambda _2}\right) ^{\gamma _{\sigma }},\left( \frac{\lambda _2}{\lambda _1}\right) ^{\gamma _{\sigma }}\right\} \quad {\textrm{and}} \quad C_{\lambda _1,\lambda _2}=\frac{a}{\max \left\{ \lambda _1^2, \lambda _2^2\right\} }. \end{aligned}$$

Proof

See [8, Lemma 7.3]. \(\square \)

Appendix B: Nondegeneracy of the Bubble Solution

In this section, we add the proof of the nondegeneracy of the spherical solution.

Proof of Lemma 4.6

Let us start with \(\phi \in H^{\sigma }({\mathbb {R}}^n)\). Using the statement in [42, Lemma 5.1], it suffices to know that \(\phi \in L^{\infty }\left( {\mathbb {R}}^n\right) \). We will divide the proof of this fact into three cases, which we describe as follows:

Case 1: \(n>6\sigma \).

Indeed, notice that, from (4.14) since \(f^{\prime }_\sigma (u_{\textrm{sph}})\in L^{\infty }({\mathbb {R}}^n)\), one can find a large constant \(C\gg 1\) depending only on \(n, \sigma \) such that

$$\begin{aligned} |\phi (x)| \leqslant \int _{{\mathbb {R}}^n} {C}{|x-y|^{2\sigma -n}}\left( \frac{|\phi (y)|}{1+|y|^{4 \sigma }}+\frac{1}{1+|y|^{n-2\sigma }}\right) \textrm{d}y \quad \text { for } \quad x \in {\mathbb {R}}^n. \end{aligned}$$
(B.1)

Also, by partitioning the Euclidean space as \({\mathbb {R}}^n=B_d(0)\cup B_d(x)\cup (B_d(0)\cup B_d(x))^c\) with \(d:={|x|}/{2} \geqslant 1\), and integrating on each subpart, we obtain

$$\begin{aligned} \int _{{\mathbb {R}}^n} \frac{|x-y|^{2\sigma -n}}{1+|y|^{n-2\sigma }}{\textrm{d} y}&\lesssim \frac{1}{|x|^{n-4\sigma }} \quad \mathrm{for \ all} \quad x \in {\mathbb {R}}^n. \end{aligned}$$
(B.2)

Furthermore, by substituting the last inequality into (B.1), one has

$$\begin{aligned} |\phi (x)| \leqslant C\left[ \int _{{\mathbb {R}}^n} \frac{|x-y|^{2\sigma -n}}{1+|y|^{4\sigma }} {|\phi (x)|}\textrm{d}y+\frac{1}{1+|x|^{n-4\sigma }}\right] \quad \text { for } \quad x \in {\mathbb {R}}^n. \end{aligned}$$
(B.3)

Next, since \(n>6\sigma \), one has that \([p_0,p_*)\ne \varnothing \), where \(p_0=\frac{2 n}{n-2 \sigma }\) and \(p_*=\frac{n}{2 \sigma }\), which allows us to use the Hardy–Littlewood–Sobolev inequality to get

$$\begin{aligned} \Vert \phi \Vert _{L^{p_1}({\mathbb {R}}^n)}&\lesssim \left\| \frac{|\phi (x)|}{1+|x|^{4 \sigma }} *{|x|^{2 \sigma -n}}\right\| _{L^{p_1}({\mathbb {R}}^n)} \nonumber \\&\lesssim \left\| \frac{|\phi (x)|}{1+|x|^{4 \sigma }}\right\| _{L^{q_1}({\mathbb {R}}^n)}\nonumber \\&\lesssim \Vert \phi \Vert _{L^{p_0}({\mathbb {R}}^n)}\left\| \frac{1}{1+|x|^{4\sigma }}\right\| _{L^{q_0}({\mathbb {R}}^n)}, \end{aligned}$$
(B.4)

for any \(p \in [p_0, p_*)\) and \(p_2=\frac{n p_0}{n-2\sigma p_0}\).

In what follows, we are based on the estimate (B.4) to run the bootstrap argument below and obtain the desired \(L^\infty \)-estimate. First, notice that from (B.4), we have \(\phi \in L^{p_1}({\mathbb {R}}^n)\), and so \(\phi \in L^{p_1}({\mathbb {R}}^n)\) for all \(p\in [p_0,p_1]\). Second, we check whether \(p_1\geqslant p_*\) or not. In the affirmative case, we apply (B.4) with \(p=p_*-\varepsilon \) for \(0<\varepsilon \ll 1\) small enough to obtain that \(\phi \in L^{p_1}({\mathbb {R}}^n)\) for all \(p\in [p_0,+\infty )\). In the negative case, we use (B.4) with \(p=p_1\), which gives us that \(\phi \in L^{p_2}({\mathbb {R}}^n)\) for all \(p\in [p_0,p_2]\), where \(p_2=\frac{np_1}{n-2\sigma p_1}\). Third, we repeat the same process for this new exponent.

More precisely, it is not hard to check that the bootstrap sequence \(\{p_\ell \}_{\ell \in {\mathbb {N}}}\subset [p_0,+\infty )\) satisfies

$$\begin{aligned} p_{\ell +1}=\left( 1+\frac{4\sigma }{n-6\sigma }\right) p_\ell \quad \mathrm{for \ all} \quad \ell \in {\mathbb {N}}. \end{aligned}$$

Hence, \(\lim _{\ell \rightarrow +\infty }p_{\ell }=+\infty \), which shows that the bootstrap technique terminates in a finite step.

Now, let us fix some \(p \gg 1\) large enough. using the same strategy as in (B.2), we find

$$\begin{aligned} \int _{{\mathbb {R}}^n}{|x-y|^{2\sigma -n}} \frac{|\phi (y)|}{1+|y|^{4\sigma }} \textrm{d}y&\lesssim \left( \int _{{\mathbb {R}}^n} \frac{|x-y|^{(2\sigma -n) p^{\prime }}}{1+|y|^{4\sigma p_0^{\prime }}} \textrm{d}y\right) ^{\frac{1}{p^{\prime }}}\Vert \phi \Vert _{L^p({\mathbb {R}}^n)} \nonumber \\&\lesssim \frac{1}{1+|x|^{\frac{n\left( p^{\prime }-1\right) }{p^{\prime }}+2\sigma }}\lesssim 1 \quad \mathrm{for \ all} \quad x\in {\mathbb {R}}^n, \end{aligned}$$
(B.5)

where \(p^{\prime }=\frac{p-1}{p}\) is the conjugate Lebesgue exponent of p. Finally, from the last estimate combined with (B.3), we deduce that \(\phi \in L^{\infty }({\mathbb {R}}^n)\); this finishes the first case.

Case 2: \(n=6 \sigma \).

Here we observe that since for \(n=6 \sigma \), it holds that \(p_0=p_*=3\), one has \([3,3)=\varnothing \); thus (B.4) does not make sense for this case. However, we still have (B.3). In addition, since by Sobolev embedding, we know \(\phi \in H^{\sigma }({\mathbb {R}}^n)\hookrightarrow L^3({\mathbb {R}}^n)\), which, as before, yields

$$\begin{aligned} \Vert \phi \Vert _{L^{p_1}({\mathbb {R}}^n)}&\lesssim \left\| \frac{|\phi (x)|}{1+|x|^{4\sigma }} *\frac{1}{|x|^{4\sigma }}\right\| _{L^{p_1}({\mathbb {R}}^n)}+\left\| \frac{1}{1+|x|^{2\sigma }}\right\| _{L^{p_1}({\mathbb {R}}^n)} \\&\lesssim \left\| \frac{|\phi (x)|}{1+|x|^{4 \sigma }}\right\| _{L^{q_1}({\mathbb {R}}^n)}+1\\&\lesssim \Vert \phi \Vert _{L^3({\mathbb {R}}^n)}\left\| \frac{1}{1+|x|^{4\sigma }}\right\| _{L^{q_0}({\mathbb {R}}^n)}+1, \end{aligned}$$

where \(q_0 \in (3, +\infty ),\zeta _1=\frac{3 q_0}{q_0+3} \in (\frac{3}{2}, 3)\), and \(p_1=\frac{3 q_1}{3-q_1} \in (3, +\infty )\).

This means that \(\phi \in L^{p}({\mathbb {R}}^n)\) for all \(p \geqslant 3\). More precisely, by taking \(q_0\gg 1\), one can make \(p\gg 1\) large enough. Finally, by the same argument in the last case, we have \(\phi \in L^{\infty }({\mathbb {R}}^n)\), which concludes the argument for the second case.

Case 3: \(2\sigma<n<6\sigma \).

In this case, using the Hardy–Littlewood–Sobolev inequality, it follows that

$$\begin{aligned} \Vert \phi \Vert _{L^{p_1}({\mathbb {R}}^n)}&\lesssim \left\| \frac{|\phi (x)|}{1+|x|^{4 \sigma }} *{|x|^{n-2 \sigma }}\right\| _{L^{p_1}({\mathbb {R}}^n)} \\&\lesssim \left\| \frac{|\phi (x)|}{1+|x|^{4 \sigma }}\right\| _{L^{q_1}({\mathbb {R}}^n)}\\&\lesssim \Vert \phi \Vert _{L^{p_0}({\mathbb {R}}^n)}\left\| \frac{1}{1+|x|^{4\sigma }}\right\| _{L^{q_0}({\mathbb {R}}^n)}, \end{aligned}$$

where \(p_0=\frac{2 n}{n-2 \sigma }=2_\sigma ^*\), \(q_0 \in (\frac{n}{2\sigma }, \frac{2 n}{6\sigma -n})\), \(q_1=\frac{p_0 q_0}{q_0+p_0}\), and \(p_1=\frac{n q_1}{n-2\sigma q_1} \in (p_0, +\infty )\). This means that \(\phi \in L^{p}({\mathbb {R}}^n)\) for all \(p \geqslant p_0\). From (B.5) we conclude that \(\phi \in L^{\infty }({\mathbb {R}}^n)\), which finishes the proof of this case.

The lemma is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, J.H., Wei, J. & Ye, Z. Complete Metrics with Constant Fractional Higher Order Q-Curvature on the Punctured Sphere. J Geom Anal 34, 6 (2024). https://doi.org/10.1007/s12220-023-01444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01444-1

Keywords

Mathematics Subject Classification

Navigation