Skip to main content
Log in

Unified results for existence and compactness in the prescribed fractional Q-curvature problem

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper we study the problem of prescribing fractional Q-curvature of order \(2\sigma \) for a conformal metric on the standard sphere \(\mathbb {S}^n\) with \(\sigma \in (0,n/2)\) and \(n\ge 3\). Compactness and existence results are obtained in terms of the flatness order \(\beta \) of the prescribed curvature function K. Making use of integral representations and perturbation result, we develop a unified approach to obtain these results when \(\beta \in [n-2\sigma ,n)\) for all \(\sigma \in (0,n/2)\). This work generalizes the corresponding results of Jin-Li-Xiong (Math Ann 369:109–151, 2017) for \(\beta \in (n-2\sigma ,n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abdelhedi, W., Chtioui, H.: On a Nirenberg-type problem involving the square root of the Laplacian. J. Funct. Anal. 265, 2937–2955 (2013)

    Article  MathSciNet  Google Scholar 

  2. Abdelhedi, W., Chtioui, H., Hajaiej, H.: A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I. Anal. PDE 9, 1285–1315 (2016)

    Article  MathSciNet  Google Scholar 

  3. Al-Ghamdi, M., Chtioui, H., Rigane, A.: Existence of conformal metrics with prescribed \(Q\)-curvature. Abstr. Appl. Anal. 11, 568245 (2013)

    MathSciNet  Google Scholar 

  4. Andrade, J.H., Wei, J., Ye, Z.: Complete metrics with constant fractional higher order Q-curvature on the punctured sphere. J. Geom. Anal. 34(1), 6–77 (2024)

    Article  MathSciNet  Google Scholar 

  5. Bahri, A., Coron, J.-M.: The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal. 95, 106–172 (1991)

    Article  MathSciNet  Google Scholar 

  6. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41(3), 253–294 (1988)

    Article  MathSciNet  Google Scholar 

  7. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138, 213–242 (1993)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  9. Chang, S.-Y., González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    Article  MathSciNet  Google Scholar 

  10. Chang, S.-Y., Gursky, M.J., Yang, P.: The scalar curvature equation on 2- and 3-spheres. Calc. Var. Partial Differ. Equ. 1, 205–229 (1993)

    Article  MathSciNet  Google Scholar 

  11. Chang, S.-Y., Yang, P.: Prescribing Gaussian curvature on \(\mathbb{S} ^2\). Acta Math. 159, 215–259 (1987)

    Article  MathSciNet  Google Scholar 

  12. Chang, S.-Y., Yang, P.: Conformal deformation of metrics on \(\mathbb{S} ^2\). J. Differ. Geom. 27, 259–296 (1988)

    Google Scholar 

  13. Chang, S.-Y., Yang, P.: A perturbation result in prescribing scalar curvature on \(\mathbb{S} ^n\). Duke Math. J. 64, 27–69 (1991)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.-H., Liu, C., Zheng, Y.: Existence results for the fractional Nirenberg problem. J. Funct. Anal. 270, 4043–4086 (2016)

    Article  MathSciNet  Google Scholar 

  15. Chtioui, H., Abdelhedi, W.: On a fractional Nirenberg type problem on the \(n\) dimensional sphere. Complex Var. Elliptic Equ. 62, 1015–1036 (2017)

    Article  MathSciNet  Google Scholar 

  16. Chtioui, H., Rigan, A.: On the prescribed \(Q\)-curvature problem on \(\mathbb{S} ^n\). J. Funct. Anal. 261, 2999–3043 (2011)

    Article  MathSciNet  Google Scholar 

  17. Chtioui, H., Bensouf, A., Al-Ghamdi, M.: Q-curvature problem on \(\mathbb{S} ^n\) under flatness condition: the case \(\beta =n\). J. Inequal. Appl. 384, 17 (2015)

    Google Scholar 

  18. Djadli, Z., Malchiodi, A., Ahmedou, M.O.: Prescribing a fourth order conformal invariant on the standard sphere, part I: a perturbation result. Commun. Contemp. Math. 4, 375–408 (2002)

    Article  MathSciNet  Google Scholar 

  19. Djadli, Z., Malchiodi, A., Ahmedou, M.O.: Prescribing a fourth order conformal invariant on the standard sphere, part II: blow up analysis and applications. Ann. Sc. Norm. Super. Pisa 5, 387–434 (2002)

    Google Scholar 

  20. Esposito, P., Robert, F.: Mountain pass critical points for Paneitz–Branson operators. Calc. Var. Partial Differ. Equ. 15, 493–517 (2002)

    Article  MathSciNet  Google Scholar 

  21. Fefferman, C., Graham, C.R.: Juhl’s formulae for GJMS operators and \(Q\)-curvatures. J. Am. Math. Soc. 26, 1191–1207 (2013)

    Article  MathSciNet  Google Scholar 

  22. Graham, C.R., Jenne, R., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian I: existence. J. Lond. Math. Soc. 46, 557–565 (1992)

    Article  MathSciNet  Google Scholar 

  23. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)

    Article  MathSciNet  Google Scholar 

  24. Han, Z.-C.: Prescribing Gaussian curvature on \(\mathbb{S} ^2\). Duke Math. J. 61, 679–703 (1990)

    Article  MathSciNet  Google Scholar 

  25. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. (JEMS) 16, 1111–1171 (2014)

    Article  MathSciNet  Google Scholar 

  26. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, Part II: Existence of solutions. Int. Math. Res. Not. IMRN 1555–1589 (2015)

  27. Jin, T., Li, Y.Y., Xiong, J.: The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369, 109–151 (2017)

    Article  MathSciNet  Google Scholar 

  28. Juhl, A.: On the recursive structure of Branson’s Q-curvatures. Math. Res. Lett. 21, 495–507 (2014)

    Article  MathSciNet  Google Scholar 

  29. Juhl, A.: Explicit formulas for GJMS-operators and Q-curvatures. Geom. Funct. Anal. 23, 1278–1370 (2013)

    Article  MathSciNet  Google Scholar 

  30. Kazdan, J., Warner, F.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. 101, 317–331 (1975)

    Article  MathSciNet  Google Scholar 

  31. Li, Y., Tang, Z., Zhou, N.: On a Fractional Nirenberg problem involving the square root of the Laplacian on \(\mathbb{S} ^3\). J. Geom. Anal. 33(7), 227 (2023)

    Article  Google Scholar 

  32. Li, Y., Tang, Z., Zhou, N.: Compactness and existence results of the prescribing fractional \(Q\)-curvatures problem on \(\mathbb{S} ^n\). Calc. Var. Partial Differ. Equ. 62(2), 58 (2023)

    Article  Google Scholar 

  33. Li, Y.Y.: Prescribing scalar curvature on \(\mathbb{S}^n\) and related problems. I. J. Differ. Equ. 120, 319–410 (1995)

    Article  Google Scholar 

  34. Li, Y.Y.: Prescribing scalar curvature on \(\mathbb{S}^n\) and related problems. II. Existence and compactness. Comm. Pure Appl. Math. 49, 541–597 (1996)

    Article  MathSciNet  Google Scholar 

  35. Morpurgo, C.: Sharp inequalities for functional integrals and traces of conformally invariant operators. Duke Math. J. 114, 477–553 (2002)

    Article  MathSciNet  Google Scholar 

  36. Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. SIGMA Symmetry Integr. Geom. Methods Appl. 4, 036 (2008)

    MathSciNet  Google Scholar 

  37. Schoen, R., Zhang, D.: Prescribed scalar curvature on the \(n\)-sphere. Calc. Var. Partial Differ. Equ. 4, 1–25 (1996)

    Article  MathSciNet  Google Scholar 

  38. Xu, X.: Uniqueness theorem for integral equations and its application. J. Funct. Anal. 247, 95–109 (2007)

    Article  MathSciNet  Google Scholar 

  39. Zhang, D.: New results on geometric variational problems, thesis, Stanford University, (1990)

Download references

Funding

Y. Li was supported by Science Foundation of China University of Petroleum, Beijing (No.2462023SZBH012), China Postdoctoral Science Foundation (2023M743879) and Postdoctoral Fellowship Program of CPSF (GZC20233106). Z. Tang was supported by National Science Foundation of China (12071036, 12126306). N. Zhou was supported by China Postdoctoral Science Foundation (2023TQ0167, 2023M741993, GZC20231344)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhou.

Ethics declarations

Conflict of interest statement

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section, we review some results about the blow up profiles for integral equations obtained in Jin-Li-Xiong [27]. For any \(x\in \mathbb {R}^{n}\) and \(r>0,\) \({B}_{r}(x)\) denotes the ball in \(\mathbb {R}^{n}\) with radius r and center x, and \(B_{r}:=B_{r}(0).\)

Let \(\Omega \) be a domain in \(\mathbb {R}^{n}\) and \(K_{i}\) are nonnegative bounded functions in \(\mathbb {R}^{n}.\) Let \(\{\tau _{i}\}_{i=1}^{\infty }\) be a sequence of nonnegative constants satisfying \(\lim _{i \rightarrow \infty } \tau _{i}=0\), and set

$$\begin{aligned} p_{i}=\frac{n+2 \sigma }{n-2 \sigma }-\tau _{i}. \end{aligned}$$

Suppose that \(0 \le u_{i} \in L_{{loc}}^{\infty }(\mathbb {R}^{n})\) satisfies the nonlinear integral equation

$$\begin{aligned} u_{i}(x)=\int _{\mathbb {R}^{n}} \frac{K_{i}(y) u_{i}(y)^{p_{i}}}{|x-y|^{n-2 \sigma }}\, \textrm{d}y \quad \text{ in } \,\Omega . \end{aligned}$$
(A.1)

We assume that \(K_{i} \in C^{1}(\Omega )\) \((K_{i}\in C^{1,1}(\Omega )\) if \(\sigma \le 1/2\)) and, for some positive constants \(A_{1}\) and \(A_{2}\),

$$\begin{aligned} 1 / A_{1} \le K_{i}, \, \Vert K_{i}\Vert _{C^{1}(\Omega )} \le A_{2},\,\left( \Vert K_{i}\Vert _{C^{1,1}(\Omega )} \le A_{2}\, \text{ if } \,\sigma \le \frac{1}{2}\right) . \end{aligned}$$
(A.2)

Proposition A.1

(Pohozaev type identity) Let \(u \ge 0\) in \(\mathbb {R}^{n}\), and \(u \in C(\overline{B}_{R})\) be a solution of

$$\begin{aligned} u(x)=\int _{B_{R}} \frac{K(y) u(y)^{p}}{|x-y|^{n-2 \sigma }} \,\textrm{d}y+h_{R}(x), \end{aligned}$$

where \(1<p \le \frac{n+2 \sigma }{n-2 \sigma },\) and \(h_{R}(x) \in C^{1}(B_{R}),\) \(\nabla h_{R} \in L^{1}(B_{R}).\) Then

$$\begin{aligned}&\Big (\frac{n-2 \sigma }{2}-\frac{n}{p+1}\Big ) \int _{B_{R}} K(x) u(x)^{p+1} \,\textrm{d}x -\frac{1}{p+1} \int _{B_{R}} x \nabla K(x) u(x)^{p+1} \,\textrm{d}x \\&\quad = \frac{n-2 \sigma }{2} \int _{B_{R}} K(x) u(x)^{p} h_{R}(x) \,\textrm{d}x +\int _{B_{R}} x \nabla h_{R}(x) K(x) u(x)^{p} \,\textrm{d}x \\&\qquad -\frac{R}{p+1} \int _{\partial B_{R}} K(x) u(x)^{p+1} \, \textrm{d}s. \end{aligned}$$

Proposition A.2

Suppose that \(0 \le u_{i} \in L_{{loc}}^{\infty }(\mathbb {R}^{n})\) satisfies (A.1) with \(K_{i}\) satisfying (A.2). Suppose that \(x_{i} \rightarrow 0\) is an isolated blow up point of \(\{u_{i}\}\), i.e., for some positive constants \(A_{3}\) and \(\bar{r}\) independent of i,

$$\begin{aligned} |x-x_{i}|^{2 \sigma /(p_{i}-1)}u_{i}(x) \le A_{3}\quad \text{ for } \text{ all } \, x \in B_{\bar{r}} \subset \Omega . \end{aligned}$$

Then for any \(0<r<\bar{r}/3\), we have the following Harnack inequality

$$\begin{aligned} \sup _{B_{2r}(x_{i}) \backslash \overline{B_{r / 2}(x_{i})}} u_{i} \le C \inf _{B_{2 r}(x_{i})\backslash \overline{B_{r/2}(x_{i})}} u_{i}, \end{aligned}$$

where C is a positive constant depending only on \(\sup _{i}\Vert K_{i}\Vert _{L^{\infty }(B_{\bar{r}}(x_{i}))}, n, \sigma , \bar{r}\) and \(A_{3}.\)

Proposition A.3

Under the hypotheses in Proposition A.2. Then for every \(R_{i} \rightarrow \infty \), \(\varepsilon _{i} \rightarrow 0^{+},\) we have, after passing to a subsequence (still denoted as \(\{u_{i}\},\) \(\{x_{i}\},\) etc.), that

$$\begin{aligned}{} & {} \Vert m_{i}^{-1} u_{i}(m_{i}^{-(p_{i}-1) /2\sigma }\cdot +x_{i}) -(1+k_{i}|\cdot |^{2})^{(2 \sigma -n) / 2}\Vert _{C^{2}(B_{2 R_{i}}(0))} \le \varepsilon _{i},\\{} & {} \quad r_{i}:=R_{i} m_{i}^{-(p_{i}-1) / 2 \sigma } \rightarrow 0 \quad \text{ as } \, i \rightarrow \infty , \end{aligned}$$

where \( m_{i}:=u_{i}(x_{i})\) and \( k_{i}:=({K_{i}(x_{i}) \pi ^{n/2}\Gamma (\sigma )}/{\Gamma (\frac{n}{2}+\sigma )})^{1/\sigma }.\)

Proposition A.4

Under the hypotheses of Proposition A.2, there exists a positive constant \(C=C(n, \sigma , A_{1}, A_{2}, A_{3})\) such that,

$$\begin{aligned} u_{i}(x) \ge C^{-1} m_{i}(1+k_{i} m_{i}^{(p_{i}-1) / \sigma }|x-x_{i}|^{2})^{(2 \sigma -n) / 2}\quad \text { for all } \, |x-x_{i}| \le 1. \end{aligned}$$

In particular, for any \(e \in \mathbb {R}^{n},|e|=1\), we have

$$\begin{aligned} u_{i}(x_{i}+e) \ge C^{-1} m_{i}^{-1+((n-2 \sigma ) / 2 \sigma ) \tau _{i}}, \end{aligned}$$

where \(\tau _{i}=(n+2 \sigma ) /(n-2 \sigma )-p_{i}\).

Proposition A.5

Under the hypotheses of Proposition A.2 with \(\bar{r}=2,\) and in addition that \(x_{i} \rightarrow 0\) is also an isolated simple blow up point with constant \(\rho ,\) we have

$$\begin{aligned} \tau _{i}=O(u_{i}(x_{i})^{-c_{1}+o(1)})\quad \text {and}\quad u_{i}(x_{i})^{\tau _{i}}=1+o(1), \end{aligned}$$

where \(c_{1}=\min \{2,2 /(n-2 \sigma )\}\). Moreover,

$$\begin{aligned} u_{i}(x) \le C u_{i}^{-1}(x_{i})|x-x_{i}|^{2 \sigma -n} \quad \text{ for } \text{ all } \,|x-x_{i}| \le 1. \end{aligned}$$

Proposition A.6

Under the hypotheses of Proposition A.5, let

$$\begin{aligned} T_{i}(x):=&u_{i}(x_{i}) \int _{B_{1}(x_{i})} \frac{K_{i}(y) u_{i}(y)^{p_{i}}}{|x-y|^{n-2 \sigma }} \, \textrm{d} y + u_{i}(x_{i}) \int _{\mathbb {R}^{n} \backslash B_{1}(x_{i})} \frac{K_{i}(y) u_{i}(y)^{p_{i}}}{|x-y|^{n-2 \sigma }}\, \textrm{d} y\\ =&:T_{i}^{\prime }(x)+T_{i}^{\prime \prime }(x). \end{aligned}$$

Then, after passing to a subsequence,

$$\begin{aligned} T_{i}^{\prime }(x) \rightarrow a|x|^{2 \sigma -n} \quad \text{ in } \, C_{loc}^{2}(B_{1} \backslash \{0\}) \end{aligned}$$

and

$$\begin{aligned} T_{i}^{\prime \prime }(x) \rightarrow h(x) \quad \text{ in } \, C_{l o c}^{2}(B_{1}) \end{aligned}$$

for some \(h(x) \in C^{2}(B_{2})\), where

$$\begin{aligned} a=\Big (\frac{\pi ^{n / 2} \Gamma (\sigma )}{\Gamma (\frac{n}{2}+\sigma )}\Big )^{-\frac{n}{2 \sigma }} \int _{\mathbb {R}^{n}}\Big (\frac{1}{1+|y|^{2}}\Big )^{\frac{n+2 \sigma }{2}} \mathrm {~d} y \lim _{i \rightarrow \infty } K_{i}(0)^{\frac{2 \sigma -n}{2 \sigma }}. \end{aligned}$$

Consequently, we have

$$\begin{aligned} u_{i}(x_{i}) u_{i}(x) \rightarrow a|x|^{2 \sigma -n} +b(x) \quad \text{ in } \, C_{l o c}^{2}(B_{1} \backslash \{0\}). \end{aligned}$$

Proposition A.7

Under the hypotheses of Proposition A.2, we have

$$\begin{aligned} \int _{|y-y_{i}| \le r_{i}}|y-y_{i}|^{s} u_{i}(y)^{p_{i}+1}\,\textrm{d}y= {\left\{ \begin{array}{ll} O(u_{i}(y_{i})^{-2 s /(n-2 \sigma )}), &{} -n<s<n, \\ O(u_{i}(y_{i})^{-2 n /(n-2 \sigma )} \log u_{i}(y_{i})), &{} s=n, \\ o(u_{i}(y_{i})^{-2 n /(n-2 \sigma )}), &{} s>n, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} \int _{r_{i}<|y-y_{i}| \le 1}|y-y_{i}|^{s} u_{i}(y)^{p_{i}+1}\,\textrm{d}y= {\left\{ \begin{array}{ll} o(u_{i}(y_{i})^{-2 s /(n-2 \sigma )}), &{} -n<s<n, \\ O (u_{i}(y_{i})^{-2 n /(n-2 \sigma )} \log u_{i} (y_{i})), &{} s=n, \\ O(u_{i}(y_{i})^{-2 n /(n-2\sigma )}), &{} s>n.\end{array}\right. } \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tang, Z., Wang, H. et al. Unified results for existence and compactness in the prescribed fractional Q-curvature problem. Nonlinear Differ. Equ. Appl. 31, 38 (2024). https://doi.org/10.1007/s00030-024-00927-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-024-00927-6

Keywords

Mathematics Subject Classification

Navigation