Skip to main content
Log in

Multiplicity of Concentrating Solutions for Choquard Equation with Critical Growth

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the multiplicity and concentration phenomenon of positive solutions to the following Choquard equation

$$\begin{aligned} -\varepsilon ^2\Delta u+V(x)u=\varepsilon ^{-\alpha }Q(x)(I_\alpha *|u|^{2^{*}_{\alpha }}) |u|^{2^{*}_{\alpha }-2}u+ f(u)\quad \text{ in }\;\mathbb {R}^N, \end{aligned}$$

where \(N\ge 3\), \((N-4)_+<\alpha < N\), \(I_\alpha \) is the Riesz potential, \(\varepsilon \) is a small parameter, \(V(x)\in C(\mathbb {R}^N)\cap L^\infty (\mathbb {R}^N)\) is a positive potential, \(f\in C^1(\mathbb {R}^+,\mathbb {R})\) is a subcritical nonlinear term and \( 2^{*}_{\alpha }=\frac{N+\alpha }{N-2}\) is the upper-critical exponent in the sense of Hardy–Littlewood–Sobolev inequality. By means of variational methods and delicate energy estimates, we establish the relationship between the number of solutions and the profiles of potentials V and Q, and the concentration behavior of positive solutions is also obtained for \(\varepsilon >0\) small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differ Equ. 263, 3943–3988 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, V.: On the multiplicity and concentration of positive solutions for a \(p\)-fractional Choquard equation in \({\mathbb{R} }^N\). Comput. Math. Appl. 78, 2593–2617 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byeon, J., Wang, Z.: Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)

    Article  MATH  Google Scholar 

  5. Cao, D., Noussair, E.: Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \({\mathbb{R} }^N\). Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 567–588 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassani, D., Zhang, J.: Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth. Adv. Nonlinear Anal. 8, 1184–1212 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chabrowski, J.: Weak Convergence Methods for Semilinear Elliptic Equations. World Scientific Publishing, Singapore (1999)

    Book  MATH  Google Scholar 

  8. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, F., Yang, M.: On the Brezis–Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, F., Zhou, J.: Semiclassical states for critical Choquard equations with critical frequency. Topol. Methods Nonlinear Anal. 57, 107–133 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Gao, F., Yang, M.: On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents. J. Math. Anal. Appl. 448, 1006–1041 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, F., Yang, M.: Infinitely many non-radial solutions for a Choquard equation. Adv. Nonlinear Anal. 11, 1085–1096 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, F., Da Silva, E., Yang, M., Zhou, J.: Existence of solutions for critical Choquard equations via the concentration compactness method. Proc. R. Soc. Edinb. Sect. A 150, 921–954 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghimenti, M., Schaftingen, J.V.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271, 107–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ji, C., Rădulescu, V.D.: Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J. Differ. Equ. 306, 251–279 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X.: Standing waves to upper critical Choquard equation with a local perturbation: multiplicity, qualitative properties and stability. Adv. Nonlinear Anal. 11, 1134–1164 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, X., Ma, S., Zhang, G.: Existence and qualitative properties of solutions for Choquard equations with a local term. Nonlinear Anal. RWA. 45, 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, X., Liu, X., Ma, S.: Infinitely many bound states for Choquard equations with local nonlinearities. Nonlinear Anal. TMA 189, 1–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57, 93–105 (1976/1977)

  20. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

  21. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. TMA 4, 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions, P.L.: Compactness and topological methods for some nonlinear variational problems of mathematical physics. In: Nonlinear Problems: Present and Future, Los Alamos 1981. North-Holland Mathematics Studies, vol. 61, pp. 17–34. North-Holland, Amsterdam (1982)

  23. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quant. Gravity 15, 2733–2742 (1998)

    Article  MATH  Google Scholar 

  24. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moroz, V., Schaftingen, J.V.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moroz, V., Schaftingen, J.V.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moroz, V., Schaftingen, J.V.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52, 199–235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moroz, V., Schaftingen, J.V.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17, 1–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moroz, V., Schaftingen, J.V.: A guide to the Choquard equation. J. Fixed Point Theory A 19, 773–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Penrose, R.: Ongravity’s role in quantum state reduction. Gen. Relativ. Gravitat. 28, 581–600 (1996)

    Article  MATH  Google Scholar 

  31. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  MATH  Google Scholar 

  32. Qi, S., Zou, W.: Semiclassical states for critical Choquard equations. J. Math. Anal. Appl. 498, 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Seok, J.: Nonlinear Choquard equations involving a critical local term. Appl. Math. Lett. 63, 77–87 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang, X., Chen, S.: Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki–Lions assumptions. Adv. Nonlinear Anal. 9, 413–437 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, F., Hu, D., Xiang, M.: Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems. Adv. Nonlinear Anal. 10, 636–658 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ni, W., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, X., Liao, F.: Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. Nonlinear Anal. TMA 196, 1–13 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wei, J., Winter, M.: Strongly interacting bumps for the Schrodinger–Newton equations. J. Math. Phys. 50, 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  40. Yang, M.: Semiclassical ground state solutions for a Choquard type equation in \({\mathbb{R} }^2\) with critical exponential growth. ESAIM Control Optim. Calc. Var. 24, 177–209 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, M., Zhang, J., Zhang, Y.: Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity, Commun. Pure. Appl. Anal. 16, 493–512 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, H., Zhang, F.: Multiplicity and concentration of solutions for Choquard equations with critical growth. J. Math. Anal. Appl. 481, 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  43. Zhou, S., Liu, Z., Zhang, J.: Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent. Adv. Nonlinear Anal. 11, 141–158 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the anonymous reviewers for their careful reading the manuscript and valuable comments. Y. Meng is supported by Beijing Natural Science Foundation (1222017) and National Natural Science Foundation of China (12271028) and X. He is supported by National Natural Science Foundation of China (12171497,11771468, 11971027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., He, X. Multiplicity of Concentrating Solutions for Choquard Equation with Critical Growth. J Geom Anal 33, 78 (2023). https://doi.org/10.1007/s12220-022-01129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01129-1

Keywords

Mathematics Subject Classification

Navigation