Skip to main content
Log in

Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the multiplicity and concentration phenomenon of positive solutions to the critical Kirchhoff-type problem:

$$\begin{aligned} -\left( \varepsilon ^2 a+\varepsilon b\int \limits _{\mathbb {R}^3}|\nabla u|^2{{\mathrm {d}}} x\right) \Delta u + V(x) u = f(u)+h(x) u^5 \quad {\mathrm{in }} \quad \mathbb {R}^3, \end{aligned}$$

where \(\varepsilon \) is a small positive parameter, a, b are positive constants, \(V \in C({\mathbb {R}}^3,\mathbb {R})\) is a positive potential, \(f \in C^1(\mathbb {R}^+, \mathbb {R})\) is a subcritical nonlinear term, \(h(x)u^5\) is a critical nonlinearity. When \(\varepsilon >0\) small, we establish the relationship between the number of positive solutions and the profile of V and h. The concentration behavior and some further properties of positive solutions are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Gwaiz, M., Benci, V., Gazzola, F.: Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. 106, 18–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M.: Nonlinear perturbations of a periodic Kirchhoff equation in \({\mathbb{R}}^N\). Nonlinear Anal. 75, 2750–2759 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrodinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosetti, A., Badiale, M., Cingolani, S.: Multiplicity results for some nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253–271 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Weth, T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Nonlinéaire 22, 259–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrodinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, D., Noussair, E.: Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \({\mathbb{R}}^N\). Ann. Inst. H. Poincaré Anal. Nonlinéaire 13, 567–588 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cerami, G., Passaseo, D.: The effect of concentrating potentials in some singularly perturbed problems. Calc. Var. Part. Differ. Equ. 17, 257–281 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Chabrowski, J.: Weak Convergence Methods for Semilinear Elliptic Equations. World Scientific Publishing Co. Pte. Ltd., Singapore (1999)

    Book  MATH  Google Scholar 

  10. del Pino, M., Felmer, P.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. PDE 4, 121–137 (1996)

    Article  MATH  Google Scholar 

  11. del Pino, M., Felmer, P.L.: Semiclassical states for nonlinear Schrodinger equations. J. Funct. Anal. 149, 245–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. del Pino, M., Felmer, P.L.: Multi-peak bound states for nonlinear Schrodinger equations. Ann. Inst. H. Poincare Anal. Nonlineaire 15, 127–149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. del Pino, M., Felmer, P.L.: Semi-classical states of nonlinear Schrodinger equations: a variational reduction method. Math. Ann. 324, 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figueiredo, G.M.: Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method. ESAIM Control Optim. Clac. Var. 20, 389–415 (2014)

    Article  MATH  Google Scholar 

  15. Figueiredo, G.M., Ikoma, N., Júnior, J.R.Santos: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213, 931–979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrodinger equations with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^3\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, Y., Li, G., Peng, S.: Concentrating bound states for Kirchhoff type problems in \({\mathbb{R}}^3\) involving critical Sobolev exponents. Adv. Nonlinear Stud. 14, 483–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, Y., Li, G.: Standing waves for a class of Kirchhoff type problems in \({\mathbb{R}}^3\) involving critical Sobolev exponents. Calc. Var. PDE 54, 3067–3106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Cal. Var. PDE 21, 287–318 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  22. Gui, C.: Existence of multi-bump solutions for nonlinear Schrodinger equations via variational methods. Commun. Part. Differ. Equ. 21, 787–820 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^3\). J. Differ. Equ. 257, 566–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Li, F., Shi, J.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Z., Guo, S.: On ground states for the Kirchhoff-type problem with a general critical nonlinearity. J. Math. Anal. Appl. 426, 267–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Z., Guo, S.: Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent. Z. Angew. Math. Phys. 66, 747–769 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Z., Guo, S., Fang, Y.: Multiple semiclassical states for coupled Schrödinger–Poisson equations with critical exponential growth. J. Math. Phys. 56, 041505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ni, M., Takagi, I.: On the shape of least energy solutions to a Neumann problem. Comm. Pure Appl. Math. 44, 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Oh, Y.-G.: Existence of semi-classical bound states of nonlinear Schrodinger equation with potential on the class \((V)_a\). Commun. Part. Differ. Equ. 13, 1499–1519 (1988)

    Article  MATH  Google Scholar 

  30. Oh, Y.-G.: On positive multi-lump bound states of nonlinear Schrodinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, J., Wu, T.F.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Equ. 256, 1771–1792 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  MATH  Google Scholar 

  35. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

Supported by NSFC (11401583), the Fundamental Research Funds for the central Universities (16CX02051A) and Shandong Provincial Natural Sciences Foundation (ZR2015AL006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zou, W. Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem. Z. Angew. Math. Phys. 68, 57 (2017). https://doi.org/10.1007/s00033-017-0803-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0803-y

Mathematics Subject Classification

Keywords

Navigation