Skip to main content
Log in

Ground States for Reaction-Diffusion Equations with Spectrum Point Zero

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the existence of ground state solution for the following reaction-diffusion equation

$$\begin{aligned} \left\{ \begin{array}{ll} \partial _t u-\Delta _x u+b(t,x)\cdot \nabla _x u+V(x)u+\lambda v=g(t,x,v),\\ - \partial _t v-\Delta _x v-b(t,x)\cdot \nabla _x v+V(x)v+\lambda u=f(t,x,u),\end{array} \right. \end{aligned}$$

where \((t,x)\in {\mathbb {R}}\times {\mathbb {R}}^N, z=(u,v): {\mathbb {R}}\times {\mathbb {R}}^N\rightarrow {\mathbb {R}}\times {\mathbb {R}},\ b=(b_1,b_2,...,b_N) \in C^1({\mathbb {R}}\times {\mathbb {R}}^N)\), \(V\in C({\mathbb {R}}^N, {\mathbb {R}}), f, g\in C({\mathbb {R}}\times {\mathbb {R}}^N \times {\mathbb {R}}, {\mathbb {R}})\), all four are depending periodically on t and x. The resulting problem engages four major difficulties: one is that the associated functional is strongly indefinite, the second is that the working space for our case is only a Banach space, not a Hilbert space, due to 0 is a boundary point of the spectrum of operator. The third difficulty we must overcome lies in verifying the link geometry and showing the boundedness of Cerami sequences. The last difficulty is due to the lack of the strict monotonicity condition, seeking a ground state solution on the Nehari-Pankov manifold is difficult which needs some new techniques and methods. These enable us to develop a direct approach and new tricks to overcome the above difficulties. We obtain ground state solutions of Nehari-Pankov type under weaker conditions on the nonlinearity based on non-Nehari manifold method developed recently. To our best knowledge, our theorems appear to be the first such results about ground state solutions of diffusion equations with spectrum point zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, A., Ahmad, Bashir., Mokhtar, K.: Global existence and large time behavior of solutions of a time behavior of solutions of a time fractional reaction diffusion system, Frac. Calc. Appl. Anal. 23 390-407 (2020)

  2. Rothe, F.: Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathamatics, Springer-Verlag, Berlin, (1984)

  3. Grindrod, P.: Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations, Clarendon Press 2 (1991)

  4. Juan, L.: The mathematical theories of diffusion: Nonlinear and fractional diffusion. Lecture Notes in Mathematics 2186, 205–278 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Murray, J.D.: Mathematical biology, Biomathematics, vol. 19, p. 2. Springer-Verlag, Berlin (1989)

    Google Scholar 

  6. Nagasawa, M.: Schrödinger Equations and Diffusion Theory. Birkhöser, Basel (1993)

    Book  MATH  Google Scholar 

  7. Saad, M., Gomez, J.: Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel. Physica A. 509, 703–716 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Santoro, P., de Paula, J., Lenzi, E., Evangelista, L.: Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell. J. Chem. Phys. 135, 1 (2011)

    Article  Google Scholar 

  9. Bartsch, T., Ding, Y.: Homoclinic solutions of an infinite-dimensional Hamiltonian system. Math. Z. 240, 289–310 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brézis, H., Nirenberg, L.: Characterization of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Sc. Norm. Super. Pisa 5, 225–326 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Clément, P., Felmer, P., Mitidieri, E.: Homoclinic orbits for a class of infinite dimensional Hamiltonian systems. Ann. Sc. Norm. Super. Pisa 24, 367–393 (1997)

    MathSciNet  MATH  Google Scholar 

  12. De Figueiredo, D.G., Ding, Y.: Strongly indefinite functions and multiple solutions of elliptic systems. Trans. Amer. Math. Soc. 355, 2973–2989 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, S., Fiscella, A., Pucci, P., Tang, X.: Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations. J. Differ. Equ. 268, 2672–2716 (2020)

    Article  MATH  Google Scholar 

  14. De Figueiredo, D.G., Felmer, P.L.: On superquadiatic elliptic systems. Trans. Amer. Math. Soc. 343, 97–116 (1994)

    Article  Google Scholar 

  15. Ding, Y., Luan, S., Willem, M.: Solutions of a system of diffusion equations. J. Fixed Point Theory Appl. 2, 117–139 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, W., Tang, X., Zhang, J.: Ground state solutions for a diffusion system. Comput. Math. Appl. 69, 337–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Szulkin, A., Weth, T.: Ground state solutions for some indefinite problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, X., Chen, S., Lin, X., Yu, J.: Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions. J. Differ. Equ. 268, 4663–4690 (2020)

    Article  MATH  Google Scholar 

  19. Tang, X.: Non-Nehari manifold method for superlinear Schrödinger equation. Taiwanese J. Math. 18, 1957–1979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tang, X., Chen, S.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differential Equations 55, 110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, P., Mei, L., Tang, X.: Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete Contin. Dyn. Syst. Ser. B 27(10), 5389–5409 (2022)

  22. Chen, P., Cao, Z., Chen, S., Tang, X.: Ground states for a fractional reaction-diffusion system. J. Appl. Anal. Comput. 11, 556–567 (2021)

    MathSciNet  Google Scholar 

  23. Ding, Y., Xu, T.: Effect of external potentials in a coupled system of multi-component incongruent diffusion. Topol. Method. Nonl. An. 54, 715–750 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Ding, Y., Xu, T.: Concentrating patterns of reaction-diffusion systems: a variational approach. Trans. Amer. Math. Soc. 369, 97–138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ding, Y., Guo, Q.: Homoclinic solutions for an anomalous diffusion system. J. Math. Anal. Appl. 46, 860–879 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J., Xu, J., Zhang, F.: Infinitely many solutions for diffusion equations without symmetry. Nonlinear Anal. 74, 1290–1303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, M., Shen, Z., Ding, Y.: On a class of infinite-dimensional Hamiltonian systems with asymptotically periodic nonlinearities. Chinese Ann. Math. 32B(1), 45–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, M.: Nonstationary homoclinic orbits for an infinite-dimensional Hamiltonian system. J. Math. Phys. 51, 102701 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, J., Tang, X., Zhang, W.: Ground state solutions for superquadratic Hamiltonian elliptic systems with gradient terms. Nonlinear Anal. 95, 1–10 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Zhang, W., Tang, X.: Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete Contin. Dyn. Syst. 37, 4565–4583 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 114 (2022)

    Article  MATH  Google Scholar 

  32. Zhang, W., Zhang, J., Mi, H.: Ground states and multiple solutions for Hamiltonian elliptic system with gradient term. Adv. Nonlinear Anal. 10, 331–352 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, F., Ding, Y.: On a diffusion system with bounded potential. Discrete Contin. Dyn. Syst. 23, 1073–1086 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei, Y., Yang, M.: Existence of solutions for a system of diffusion equations with spectrum point zero. Z. Angew. Math. Phys. 65, 325–337 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ding, Y.: Variational methods for strongly indefinite problems. World Scientific Press, USA (2008)

    Google Scholar 

  36. Chen, P., Tang, X., Zhang, L.: Non-Nehari manifold method for hamiltonian elliptic system with Hardy Potential: existence and asymptotic properties of ground state solution. J. Geom. Anal. 32(2), 46 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, P., Chen, H., Tang, X.: Ground states of \(K\)-component coupled nonlinear Schrödinger equations with inverse-square potential. Chin. Ann. Math. Ser. B 43(3), 319–342 (2022)

    Article  MATH  Google Scholar 

  38. Chen, P., Tang, X.: Ground states for a system of nonlinear Schrödinger equations with singular potentials. Discrete Contin. Dyn. Syst. 42(10), 5105–5136 (2022)

  39. Qin, D., Tang, X.: Asymptotically linear Schrödinger equation with zero on the boundary of the spectrum. Electron. J. Differ. Eq. 213, 1–15 (2015)

    Google Scholar 

  40. Tang, X.: New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum. J. Math. Anal. Appl. 413, 392–410 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, G., Szulkin, A.: An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math. 4, 763–776 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kryszewski, W., Szulkin, A.: An infinite dimensional morse theorem with applications. Trans. Amer. Math. Soc. 349, 3184–3234 (1997)

    Article  MATH  Google Scholar 

  43. Pankov, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lions, L.: The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 223-283. 10, 20, 21 (1984)

  45. Willem, M.: Minimax Theorems. Birkhauser, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by Natural Science Foundation of Hubei Province of China(2021CFB473)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Tang, X. Ground States for Reaction-Diffusion Equations with Spectrum Point Zero. J Geom Anal 32, 308 (2022). https://doi.org/10.1007/s12220-022-01027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01027-6

Keywords

Mathematics Subject Classification

Navigation