Skip to main content
Log in

Normalized Solutions of Nonlinear Schrödinger Equations with Potentials and Non-autonomous Nonlinearities

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the existence and multiplicity of normalized solutions to the following Schrödinger equations with potentials and non-autonomous nonlinearities:

$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u+V(x)u+\lambda u=f(x,u) \quad \text {in}~{\mathbb {R}}^N, \\&\int _{{\mathbb {R}}^N} |u(x)|^2\mathrm {d}x=a, \quad u\in H^1({\mathbb {R}}^N) , \end{aligned}\right. \end{aligned}$$

where \(V(x)\le \lim _{|x|\rightarrow \infty } V(x){:=}V_{\infty }\in (-\infty ,+\infty ]\) and f(xs) satisfies Berestycki–Lions type conditions with mass sub-critical growth. In the case \(V_{\infty }=+\infty \), we prove that for all \(a>0\), the equation has a ground state solution, and if additionally f is odd, the equation has infinitely many normalized solutions with increasing energy. While in the case \(V_{\infty }<+\infty \), we prove that there exists \(a_0\ge 0\) such that the ground state energy can be attained when \(a>a_0\), but not when \(0<a<a_0\). To this end, We develop robust arguments to show the conditional strict subadditivity of the ground state energy with respect to a. We also investigate the multiplicity of normalized radial solutions by index theory in this case. These results can be extended to other types of Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, W.-Z., Cai, Y.-Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T.: Topological Methods for Variational Problems with Symmetries. Springer, Berlin (1993)

    Book  Google Scholar 

  3. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  Google Scholar 

  5. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on \(\mathbb{R}^N\). Arch. Rational Mech. Anal. 124, 261–276 (1993)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Zhong, X.-X., Zou, W.-M.: Normalized solutions for a coupled Schrödinger system. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-02000-w

    Article  MATH  Google Scholar 

  7. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations, I existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  8. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations, II existence of infinitely many solutions. Arch. Rational Mech. Anal. 82, 347–375 (1983)

    Article  MathSciNet  Google Scholar 

  9. Cazenave, T.: Semilinear Schrödinger Equations. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

  10. Chen, S.-T., Tang, X.-H.: Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold. J. Geom. Anal. 30, 1637–1660 (2020)

    Article  MathSciNet  Google Scholar 

  11. Ding, Y.-H., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397–419 (2007)

    Article  Google Scholar 

  12. Egorov, Y.-V., Kondratiev, V.-A.: On Spectral Theory of Elliptic Operators. Birkhäuser Verlag, Basel (1996)

    Book  Google Scholar 

  13. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  14. Hirata, J., Tanaka, K.: Nonlinear scalar field equations with \(L^2\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19, 263–290 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ikoma, N., Miyamoto, Y.: Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities. Calc. Var. Partial Differ. Equ. 59, 1–20 (2020)

    Article  Google Scholar 

  16. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  Google Scholar 

  17. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on \(\mathbb{R}^N\). Proc. R. Soc. Edinburgh Sect. A 129, 787–809 (1999)

    Article  Google Scholar 

  18. Jeanjean, L., Lu, S.-S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32, 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  19. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential equations. American Mathematical Society, Providence (1986)

    Book  Google Scholar 

  20. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  21. Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscripta Math. 143, 221–237 (2014)

    Article  MathSciNet  Google Scholar 

  22. Strauss, W.-A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  23. Willem, M., Zou, W.-M.: On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ. Math. J. 52, 109–132 (2003)

    Article  MathSciNet  Google Scholar 

  24. Zhang, J.: Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 51, 498–503 (2000)

    Article  MathSciNet  Google Scholar 

  25. Zhong, X.-X., Zou, W.-M.: Ground state normalized solution to the Schrödinger equation with potential. to appear

  26. Zhu, X.-P., Cao, D.-M.: The concentration-compactness principle in nonlinear elliptic equations. Acta Math. Sci. (English Ed.) 9, 307–328 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Shijie Qi acknowledges the support of the Postdoctoral Research Foundation of China (No.2020M670272), and Wenming Zou acknowledges the support of National Natural Science Foundation of China (No. 11771234, 11371212, 11025106)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC (Nos. 11771234, 11371212, 11025106) and PRFC (No. 2020M670272)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Qi, S. & Zou, W. Normalized Solutions of Nonlinear Schrödinger Equations with Potentials and Non-autonomous Nonlinearities. J Geom Anal 32, 159 (2022). https://doi.org/10.1007/s12220-022-00897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00897-0

Keywords

Mathematics Subject Classification

Navigation