Skip to main content
Log in

Prescribed Webster Scalar Curvatures on Compact Pseudo-Hermitian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate the problem of prescribing Webster scalar curvatures on compact pseudo-Hermitian manifolds. In terms of the method of upper and lower solutions and the perturbation theory of self-adjoint operators, we can describe some sets of Webster scalar curvature functions which can be realized through pointwise CR conformal deformations and CR conformally equivalent deformations respectively from a given pseudo-Hermitian structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Bers, L., John, F., Schechter, M.: Partial Differential Equations. John Wiley & Sons Inc, New York (1964)

    MATH  Google Scholar 

  3. Chtioui, H., Ahmedou, M.O., Yacoub, R.: Topological methods for the prescribed Webster scalar curvature problem on CR manifolds. Differ. Geom. Appl. 28(3), 264–281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chtioui, H., Ahmedou, M.O., Yacoub, R.: Existence and multiplicity results for the prescribed Webster scalar curvature problem on three CR manifolds. J. Geom. Anal. 23, 878–894 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chtioui, H., Elmehdi, K., Gamara, N.: The Webster scalar curvature problem on the three dimensional CR manifolds. Bull. Sci. Math. 131, 361–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, J.H.: Curvature functions for the sphere in pseudohermitian geometry. Tokyo J. Math. 14(1), 151–163 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, D., Peng, S., Yan, S.: On the Webster scalar curvature problem on the CR sphere with a cylindrical-type symmetry. J. Geom. Anal. 23, 1674–1702 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Xu, X.: The scalar curvature flow on \(S^n\) perturbation theorem revisited. Invent. Math. 187, 395–506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danielli, D.: A compact embedding theorem for a class of degenerate Sobolev spaces. Rend. Sem. Mat. Univ. Pol. Torino 49(3), 399–420 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Dragomir, S., Tomassini, G.: Differential geometry and analysis on CR manifolds. In: Progress in Mathematics, vol. 246, Birkhäuser, Boston (2006)

  11. Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial }_b\)-complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  MATH  Google Scholar 

  12. Felli, V., Uguzzoni, F.: Some existence results for the Webster scalar curvature problem in presence of symmetry. Ann. Mat. Pura Appl. 183, 469–493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gamara, N.: The CR Yamabe conjecture the case \(n=1\). J. Eur. Math. Soc. 3, 105–137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gamara, N.: The prescribed scalar curvature on a 3-dimensional CR manifold. Adv. Nonlinear Stud. 2, 193–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gamara, N., Amria, A., Guemria, H.: Optimal control in prescribing Webster scalar curvatures on 3-dimensional pseudo Hermitian manifolds. Nonlinear Anal. 127, 235–262 (2015)

    Article  MathSciNet  Google Scholar 

  16. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. Studies in Advanced Mathematics. American Mathematical Society, International Press (2009)

  17. Gamara, N., Yacoub, R.: CR Yamabe conjecture—the conformally flat case. Pac. J. Math. 201(1), 121–175 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ho, P.T.: Prescribed curvature flow on surfaces. Indiana Univ. Math. J. 60, 1517–1542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ho, P.T.: Result related to prescribing pseudo-Hermitian scalar curvature. Int. J. Math. 24(3), 29 (2013)

    Article  MathSciNet  Google Scholar 

  20. Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part I. Adv. Math. 268, 758–835 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ho, P.T.: The Webster scalar curvature flow on CR sphere. Part II. Adv. Math. 268, 836–905 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ho, P.T.: Prescribed Webster scalar curvature on \(S^{2n+1}\) in the presence of reflection or rotation symmetry. Bull. Sci. Math. 140, 506–518 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ho, P.T., Kim, S.: CR Nirenberg problem and zero Webster scalar curvature. Ann. Glob. Anal. Geom. 58, 207–226 (2020)

    Article  MATH  Google Scholar 

  24. Ho, P.T., Sheng, W., Wang, K.: Convergence of the CR Yamabe flow. Math. Ann. 373, 743–830 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1, 1–13 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Perturbation Theory for Linear Operator, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 132. Springer, Berlin

  28. Kriegl, A., Michor, P.W., Rainer, A.: Denjoy-Carleman differentiable perturbation of polynomials and unbounded operators. Integral Equ. Oper. Theory 71(3), 407–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10, 113–134 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. Math. 101(2), 317–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kazdan, J.L., Warner, F.W.: A direct approach to the determination of Gaussian and scalar curvature functions. Invent. Math. 28, 227–230 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, J.M.: The Fefferman metric and pseudohermitian invariants. Trans. Am. Math. Soc. 296, 411–429 (1986)

    MATH  Google Scholar 

  33. Malchiodi, A., Uguzzoni, F.: A perturbation result for the Webster scalar curvature problem on the CR sphere. J. Math. Pures Appl. 81, 983–997 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ngô, Q.A., Zhang, H.: Prescribed Webster scalar curvature on CR manifolds of negative conformal invariants. J. Differ. Equ. 258, 4443–4490 (2015)

    Article  MATH  Google Scholar 

  35. Ouyang, T.: On the positive solutions of semilinear equations \(\Delta u+\lambda u-hu^p=0\) on compact manifolds. II. Indiana Univ. Math. J. 40, 1083–1141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ouyang, T.: on the positive solutions of semilinear equations \(\Delta u+\lambda u-hu^p=0\) on compact manifolds. Trans. Am. Math. Soc. 331, 503–527 (1992)

    Google Scholar 

  37. Riahi, M., Gamara, N.: Multiplicity results for the prescribed Webster scalar curvature on the three CR sphere under flatness condition. Bull. Sci. Math. 136, 72–95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rauzy, A.: Courbures scalaires des variétés d’invariant conforme négatif. Trans. Am. Math. Soc. 347, 4729–4745 (1995)

    MATH  Google Scholar 

  39. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(1), 247–320 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Salem, E., Gamara, N.: The Webster scalar curvature revisited: the case of the three dimensional CR sphere. Calc. Var. Partial Differ. Equ. 42, 107–136 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tang, J.J.: Solvability of the equation \(\Delta _gu+\tilde{S}u^\sigma =Su\) on manifolds. Proc. Am. Math. Soc. 121, 83–92 (1994)

    Google Scholar 

  43. Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  44. Wang, W.: Canonical contact forms on spherical CR manifolds. J. Eur. Math. Soc. 5, 245–273 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Webster, S.M.: Pseudohermitian structures on a real hypersurface. J. Differ. Geom. 13, 25–41 (1978)

    Article  MATH  Google Scholar 

  46. Xu, C.J.: Regularity for quasilinear second-order subelliptic equations. Commun. Pure Appl. Math. XLV, 77–96 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yacoub, R.: Existence results for the prescribed Webster scalar curvature on higher dimensional CR Manifolds. Adv. Nonlinear Stud. 13, 625–661 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author Y. Dong is supported by NSFC Grants No. 11771087 and No. 12171091, and LMNS, Fudan. The second author Y. Ren is supported by NSFC Grant No. 11801517. The third author W. Yu is the corresponding author.

Appendix

Appendix

In this section, we give an alternative proof of Theorem 3.4 by following the spirit of [30]. Although the expressions are different, the following theorem and Theorem 3.4 are completely equivalent.

Theorem 4.7

Let \((M^{2n+1},H,J,\theta )\) be a compact pseudo-Hermitian manifold. Then \(S=\{f\in C^\infty (M):\ f<0\}\subset \text {Im}\ T\) if and only if \(\lambda _1<0\), where T is as in (4.1) with \(\rho \in C^\infty (M)\), and \(\text {Im}\ T=\{Tu: 0<u\in S^p_2(M)\}\).

Proof

If \(S\subset \text {Im}\ T\), then \(-1\in \text {Im}\ T\), i.e., \(T(u)=-1\) for some \(C^\infty (M)\) function \(u>0\). Thus, \(Lu=-u^a\). Let \(\psi \) be the positive eigenfunction of L with respect to \(\lambda _1\), namely, \(L\psi =\lambda _1\psi \). So we have the following

$$\begin{aligned} \lambda _1\langle \psi , u\rangle _{L^2}=\langle L \psi , u\rangle _{L^2}=\langle \psi , Lu\rangle _{L^2}=-\langle \psi , u^a\rangle _{L^2}<0 \end{aligned}$$
(4.19)

which implies \(\lambda _1<0\).

For the converse, assume that \(\lambda _1<0\). Set \(K=S\cap \text {Im}\ T\). From \(L\psi =\lambda _1\psi \), we have \(T(\psi )=\lambda _1\psi ^{1-a}<0\), thus \(\lambda _1\psi ^{1-a}\in K\). Consequently, K is nonempty. Clearly, S is connected. In order to prove \(K=S\), it is sufficient to prove K is a both open and closed subset in S. For openness, we will show that for any \(u>0\), \(T(u)\in K\) implies \(\ker T'(u)=\ker A(u)=0\), where A(u) is defined by (4.4), and thus K is open subset of S in terms of Theorem 4.2. Let \(\mu _1\) be the first eigenvalue of A(u) and \(\phi \) be the corresponding positive eigenfunction. By (4.4), we have

$$\begin{aligned} \mu _1\langle \phi , u\rangle _{L^2}=\langle A(u)\phi , u\rangle _{L^2}=\langle \phi , A(u)u\rangle _{L^2}=\frac{1-a}{b_n}\langle \phi , T(u)u^a \rangle _{L^2}>0 \end{aligned}$$
(4.20)

which gives \(\mu _1>0\), and so \(\ker A(u)=0\). For closeness, we assume that \(f_j\in K\) and \(f_j\xrightarrow {C^0} f\in S\), we need prove \(f\in K\), i.e., there is \(u\in S^p_2(M)\) such that \(T(u)=f\). Since \(f_j\in K\), there exists a function \(0<u_j\in C^\infty (M)\) satisfying \(T(u_j)=f_j\). Let \(w_j=\log {\frac{u_j}{\psi }}\) where \(\psi \) is the positive eigenfunction associated with the first eigenvalue \(\lambda _1\) of L. Then \(w_j\) satisfies

$$\begin{aligned} -b_n\Delta _\theta w_j-b_n \nabla ^H w_j\cdot \left( \nabla ^H w_j+2\frac{\nabla ^H\psi }{\psi } \right) =-\lambda _1+f_j\psi ^{a-1}e^{(a-1)w_j} \end{aligned}$$
(4.21)

where \(\cdot \) is the inner product induced by the Webster metric \(g_\theta \). Considering the maximum and minimum of \(w_j\) and using the classical maximum principle, it is easy to show that there are two constants \(m_1, m_2>0\) independent of j such that \(0<m_1\le u_j\le m_2\). Hence, applying Lemma 4.1 to the operator \(L_4=-\Delta _\theta + id\), we have

$$\begin{aligned} \Vert u_j\Vert _{S^p_2(M)}\le C\Vert L_4u_j\Vert _{L^p(M)}=C\left\| \frac{1}{b_n}(f_ju_j^a-\rho u_j)+u_j\right\| _{L^p(M)}\le \hat{C} \end{aligned}$$
(4.22)

where \(C, \hat{C}\) are constants independent of j. Using the compactly embedding theorem \(S^p_2(M)\subset W^{1,p}(M)\subset \subset C^0(M)\) ( \(p>2n+1\), cf. Theorem 19.1 of [11]), there exists a subsequence \(\{u_{j_k}\}\) such that \(u_{j_k}\xrightarrow {C^0} u\) as \(k\rightarrow +\infty \), where \(u>0\) in M since \(0<m_1\le u_{j_k}\le m_2\). Moreover, the subsequence \(\{u_{j_k}\}\) is a Cauchy sequence in \(S^p_2(M)\), because

$$\begin{aligned} \Vert u_{j_k}-u_{j_l}\Vert _{S^p_2(M)}&\le C \Vert L_4(u_{j_k}-u_{j_l})\Vert _{L^p(M)}\nonumber \\&=C\left\| (u_{j_k}-u_{j_l})+\frac{1}{b_n}(f_{j_k}u_{j_k}^a-f_{j_l}u_{j_l}^a+\rho u_{j_l}-\rho u_{j_k})\right\| _{L^p(M)}\nonumber \\&\rightarrow 0, \end{aligned}$$
(4.23)

as \(k,l \rightarrow +\infty \). Therefore, \(u_{j_k}\rightarrow u\) in \(S^p_2(M)\) as \(k\rightarrow +\infty \). Let \(k\rightarrow \infty \) in \(T(u_{j_k})=f_{j_k}\), by the continuity of \(T: S^p_2(M)\rightarrow L^p(M)\), we obtain \(T(u)=f\), so \(f\in K\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Ren, Y. & Yu, W. Prescribed Webster Scalar Curvatures on Compact Pseudo-Hermitian Manifolds. J Geom Anal 32, 151 (2022). https://doi.org/10.1007/s12220-022-00884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00884-5

Keywords

Mathematics Subject Classification

Navigation