Skip to main content
Log in

Regularity Theory for Mixed Local and Nonlocal Parabolic p-Laplace Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We investigate the mixed local and nonlocal parabolic p-Laplace equation

$$\begin{aligned} \partial _t u(x,t)-\Delta _p u(x,t)+\mathcal {L}u(x,t)=0, \end{aligned}$$

where \(\Delta _p\) is the usual local p-Laplace operator and \(\mathcal {L}\) is the nonlocal p-Laplace type operator. Based on the combination of suitable Caccioppoli-type inequality and Logarithmic Lemma with a De Giorgi–Nash–Moser iteration, we establish the local boundedness and Hölder continuity of weak solutions for such equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Barlow, M.T., Bass, R.F., Chen, Z., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009)

    Article  MathSciNet  Google Scholar 

  3. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Mixed local and nonlocal elliptic operators: regularity and maximum principles. Commun. Partial Differ. Equ. (2021). https://doi.org/10.1080/03605302.2021.1998908

  4. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Semilinear elliptic equations involving mixed local and nonlocal operators. Proc. R. Soc. Edinburgh Sect. A 151(5), 1611–1641 (2021)

  5. Brasco, L., Lindgren, E., Strömqvist, M.: Continuity of solutions to a nonlinear fractional diffusion equation. J. Evol. Equ. (2021). https://doi.org/10.1007/s00028-021-00721-2

  6. Caffarelli, L., Chan, C., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Kumagai, T.: A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev. Mat. Iberoam. 26(2), 551–589 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Kim, P., Song, R., Vondraček, Z.: Boundary Harnack principle for \(\Delta +\Delta ^{\alpha /2}\). Trans. Am. Math. Soc. 364(8), 4169–4205 (2012)

    Article  Google Scholar 

  9. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)

    Book  Google Scholar 

  10. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1279–1299 (2016)

    Article  MathSciNet  Google Scholar 

  11. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ding, M., Zhang, C., Zhou, S.: Local boundedness and Hölder continuity for the parabolic fractional \(p\)-Laplace equations. Calc. Var. Partial Differ. Equ. 60, 38 (2021)

    Article  Google Scholar 

  13. Dipierro, S., Proietti Lippi, E., Valdinoci, E.: Linear theory for a mixed operator with Neumann conditions. arXiv:2006.03850

  14. Dipierro, S., Lippi, E. Proietti., Valdinoci, E.: (Non)local logistic equations with Neumann conditions. arXiv:2101.02315

  15. Dipierro, S., Ros-Oton, X., Serra, J., Valdinoci, E.: Non-symmetric stable operators: regularity theory and integration by parts. arXiv:2012.04833

  16. Dipierro, S., Valdinoci, E.: Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes. Phys. A 575, 126052 (2021)

    Article  Google Scholar 

  17. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  18. Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Commun. Partial Differ. Equ. 38(9), 1539–1573 (2013)

    Article  MathSciNet  Google Scholar 

  19. Foondun, M.: Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part. Electron. J. Probab. 14(11), 314–340 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Garain, P., Kinnunen, J.: On the regularity theory for mixed local and nonlocal quasilinear elliptic equations. arXiv:2102.13365

  21. Garain, P., Kinnunen, J.: Weak Harnack inequality for a mixed local and nonlocal parabolic equation. arXiv:2105.15016

  22. Kim, Y.: Nonlocal Harnack inequalities for nonlocal heat equations. J. Differ. Equ. 267(11), 6691–6757 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kinnunen, J., Lindqvist, P.: Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. 185(3), 411–435 (2006)

    Article  MathSciNet  Google Scholar 

  24. Mazón, J.M., Rossi, J.D., Toledo, J.: Fractional \(p\)-Laplacian evolution equations. J. Math. Pures Appl. 105(6), 810–844 (2016)

    Article  MathSciNet  Google Scholar 

  25. Molica Bisci, G., Radulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  26. Strömqvist, M.: Local boundedness of solutions to nonlocal parabolic equations modeled on the fractional \(p\)-Laplacian. J. Differ. Equ. 266, 7948–7979 (2019)

    Article  MathSciNet  Google Scholar 

  27. Vázquez, J.L.: The Dirichlet problem for the fractional \(p\)-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)

    Article  MathSciNet  Google Scholar 

  28. Vázquez, J.L.: The evolution fractional \(p\)-Laplacian equation in \({\mathbb{R}}^N\). Fundamental solution and asymptotic behaviour. Nonlinear Anal. 199, 112034 (2020)

    Article  MathSciNet  Google Scholar 

  29. Vázquez, J.L.: The fractional \(p\)-Laplacian evolution equation in \({\mathbb{R}}^N\) in the sublinear case. Calc. Var. Partial Differ. Equ. 60, 140 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for many valuable comments and suggestions to improve the manuscript. This work was supported by the National Natural Science Foundation of China (No. 12071098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Shang, B. & Zhang, C. Regularity Theory for Mixed Local and Nonlocal Parabolic p-Laplace Equations. J Geom Anal 32, 22 (2022). https://doi.org/10.1007/s12220-021-00768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00768-0

Keywords

Mathematics Subject Classification

Navigation