We introduce the following two sets
$$\begin{aligned} {\mathcal {L}}&=\left\{ \lambda >0: \text {problem } ({\hbox {P}_\lambda })\text { has a positive solution}\right\} ,\\ {\mathcal {S}}_\lambda&=\left\{ u: u\text { is a positive solution of problem }({\hbox {P}_\lambda })\right\} . \end{aligned}$$
First we show that the set \({\mathcal {L}}\) of admissible parameters is nonempty and we determine the regularity properties of the elements of \({\mathcal {S}}_\lambda \) for \(\lambda \in {\mathcal {L}}\).
Let \({\overline{u}}_1 \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) be the unique positive solution of (\(\hbox {Au}_\lambda \)) with \(\lambda =1\), see Proposition 3.1. From the proof of the Lemma of Lazer–McKenna [14, p. 274] we know that \({\overline{u}}_1(\cdot )^{-\eta (\cdot )}\in L^{1}(\Omega )\). We consider the following anisotropic Dirichlet problem
Proposition 4.1
If hypothesis H\(_0\) holds, then problem (Au)’ has a unique positive solution \({\tilde{u}}\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) such that \({\overline{u}}_1 \le {\tilde{u}}\).
Proof
In order to establish the existence of a positive solution, we argue as in the first part of the proof of Proposition 3.1. So, we consider the approximation
$$\begin{aligned} -\Delta _{p(\cdot )} u - \Delta _{q(\cdot )} u = 1+\left[ {\overline{u}}_1+\frac{1}{n}\right] ^{-\eta (x)} \quad \text {in }\Omega , \quad u\big |_{\partial \Omega }=0, \quad n\in {\mathbb {N}}. \end{aligned}$$
This problem has a unique solution \({\tilde{u}}_n\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \). Testing the equation with \({\tilde{u}}_n\) we obtain
$$\begin{aligned} \varrho _{p(\cdot )}\left( \nabla {\tilde{u}}_n\right) \le \int _{\Omega }{\tilde{u}}_n\mathop {}\!\mathrm {d}x+\int _{\Omega }\frac{{\tilde{u}}_n}{{\overline{u}}_1^{\eta (x)}}\mathop {}\!\mathrm {d}x. \end{aligned}$$
As before, by using the anisotropic Hardy’s inequality, we conclude that
$$\begin{aligned} \varrho _{p(\cdot )}\left( \nabla {\tilde{u}}_n\right) \le c_5 \left\| {\tilde{u}}_n\right\| \quad \text {for all }n\in {\mathbb {N}}\text { and for some }c_5>0. \end{aligned}$$
Therefore, \(\{{\tilde{u}}_n\}_{n\in {\mathbb {N}}}\subseteq W^{1,p(\cdot )}_{0}(\Omega )\) is bounded.
As in the proof of Proposition 3.1 we have that \(\{{\tilde{u}}_n\}_{n\in {\mathbb {N}}}\subseteq C^1_0({\overline{\Omega }})\) is relatively compact and so we may assume that
$$\begin{aligned} {\tilde{u}}_n\rightarrow {\tilde{u}}\quad \text {in }C^1_0({\overline{\Omega }}). \end{aligned}$$
(4.1)
Moreover, if \({\underline{u}}\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) is the unique positive solution of
$$\begin{aligned} -\Delta _{p(\cdot )} u - \Delta _{q(\cdot )} u = 1\quad \text {in }\Omega , \quad u\big |_{\partial \Omega }=0, \end{aligned}$$
then by the weak comparison principle, we have \({\underline{u}}\le {\tilde{u}}_n\) for all \(n\in {\mathbb {N}}\). Hence, \({\underline{u}}\le {\tilde{u}}\) and so \({\tilde{u}} \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \). Furthermore, using (4.1) as \(n\rightarrow \infty \) in the corresponding equation for \({\tilde{u}}_n\), we obtain
$$\begin{aligned} \left\langle A_{p(\cdot )} \left( {\tilde{u}}\right) ,h\right\rangle +\left\langle A_{q(\cdot )} \left( {\tilde{u}}\right) ,h\right\rangle = \int _{\Omega }\left[ 1+{\overline{u}}_1^{-\eta (x)}\right] h\mathop {}\!\mathrm {d}x \end{aligned}$$
for all \(h\in W^{1,p(\cdot )}_{0}(\Omega )\). Thus, \({\tilde{u}}\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) is a positive solution of (Au)’.
On account of Proposition 2.2 this positive solution is unique. Moreover we have
$$\begin{aligned} 0&\le \left\langle A_{p(\cdot )} \left( {\overline{u}}_1\right) -A_{p(\cdot )} \left( {\tilde{u}}\right) ,\left( {\overline{u}}_1-{\tilde{u}}\right) ^+\right\rangle + \left\langle A_{q(\cdot )} \left( {\overline{u}}_1\right) -A_{q(\cdot )} \left( {\tilde{u}}\right) ,\left( {\overline{u}}_1-{\tilde{u}}\right) ^+\right\rangle \\&=\int _{\Omega }\left[ {\overline{u}}_1^{-\eta (x)}-\left( 1+{\overline{u}}_1^{-\eta (x)}\right) \right] \left( {\overline{u}}_1-{\tilde{u}}\right) ^+\mathop {}\!\mathrm {d}x\le 0. \end{aligned}$$
This shows that \({\overline{u}}_1 \le {\tilde{u}}\). \(\square \)
We are going to apply \({\overline{u}}_\lambda , {\tilde{u}}\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) in order to show the nonemptiness of \({\mathcal {L}}\).
Proposition 4.2
If hypotheses H\(_0\) and H\(_1\) hold, then \({\mathcal {L}}\ne \emptyset \) and \({\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) for every \(\lambda \in {\mathcal {L}}\).
Proof
Let \(\lambda \in (0,1]\). Taking Propositions 3.1 and 4.1 into account, we define the Carathéodory function \({\hat{g}}_\lambda :\Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}\) by
$$\begin{aligned} \begin{aligned} {\hat{g}}_\lambda (x,s)= {\left\{ \begin{array}{ll} \lambda \left[ {\overline{u}}_\lambda ^{-\eta (x)}+f\left( x,{\overline{u}}_\lambda (x)\right) \right] &{} \text {if }s<{\overline{u}}_\lambda (x),\\ \lambda \left[ s^{-\eta (x)}+f\left( x,s\right) \right] &{} \text {if }{\overline{u}}_\lambda (x)\le s \le {\tilde{u}}(x),\\ \lambda \left[ {\tilde{u}}^{-\eta (x)}+f\left( x,{\tilde{u}}(x)\right) \right] &{} \text {if }{\tilde{u}}(x)<s. \end{array}\right. } \end{aligned} \end{aligned}$$
(4.2)
We consider the following Dirichlet problem
$$\begin{aligned} -\Delta _{p(\cdot )} u - \Delta _{q(\cdot )} u = {\hat{g}}_\lambda (x,u)\quad \text {in }\Omega , \quad u\big |_{\partial \Omega }=0. \end{aligned}$$
(4.3)
By using the direct method of the calculus of variations, we will produce a solution for problem (4.3) when \(\lambda \in (0,1]\) is small enough. So, let \({\hat{G}}_\lambda (x,s)=\int ^s_0{\hat{g}}_\lambda (x,t)\mathop {}\!\mathrm {d}t\) and consider the \(C^1\)-functional \({\hat{\varphi }}_\lambda :W^{1,p(\cdot )}_{0}(\Omega )\rightarrow {\mathbb {R}}\) defined by
$$\begin{aligned} {\hat{\varphi }}_\lambda (u)=\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\mathop {}\!\mathrm {d}x+\int _{\Omega }\frac{1}{q(x)}|\nabla u|^{q(x)}\mathop {}\!\mathrm {d}x-\int _{\Omega }{\hat{G}}_\lambda (x,u)\mathop {}\!\mathrm {d}x \end{aligned}$$
for all \(u\in W^{1,p(\cdot )}_{0}(\Omega )\). From the definition of the truncation in (4.2) it is easy to see that
$$\begin{aligned} {\hat{\varphi }}_\lambda (u)\ge \frac{1}{p_+} \left[ \varrho _{p(\cdot )}(\nabla u)+\varrho _{q(\cdot )}(\nabla u)\right] -c_5 \end{aligned}$$
for some \(c_5>0\). Hence, \({\hat{\varphi }}_\lambda :W^{1,p(\cdot )}_{0}(\Omega )\rightarrow {\mathbb {R}}\) is coercive. Further \({\hat{\varphi }}_\lambda :W^{1,p(\cdot )}_{0}(\Omega )\rightarrow {\mathbb {R}}\) is sequentially weakly lower semicontinuous. Hence, there exists \(u_\lambda \in W^{1,p(\cdot )}_{0}(\Omega )\) such that
$$\begin{aligned} {\hat{\varphi }}_\lambda (u_\lambda )=\min \left[ {\hat{\varphi }}_\lambda (u)\,:\,u\in W^{1,p(\cdot )}_{0}(\Omega )\right] . \end{aligned}$$
(4.4)
Since \({\tilde{u}}\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \), on account of hypothesis H\(_1\)(i) we can find \(\lambda \in (0,1]\) small enough such that
$$\begin{aligned} \lambda f\left( x,{\tilde{u}}\right) \le 1\quad \text {for a. a. }x\in \Omega . \end{aligned}$$
(4.5)
From (4.4) we have \({\hat{\varphi }}_\lambda '(u_\lambda )=0\), that is,
$$\begin{aligned} \left\langle A_{p(\cdot )}\left( u_\lambda \right) ,h\right\rangle +\left\langle A_{q(\cdot )}\left( u_\lambda \right) ,h\right\rangle =\int _{\Omega }{\hat{g}}_\lambda (x,u_\lambda )h\mathop {}\!\mathrm {d}x \end{aligned}$$
(4.6)
for all \(h\in W^{1,p(\cdot )}_{0}(\Omega )\). First, we take \(h=\left( {\overline{u}}_\lambda -u_\lambda \right) ^+\in W^{1,p(\cdot )}_{0}(\Omega )\) in (4.6). Then, applying (4.2), H\(_1\)(i) and Proposition 3.4, we obtain
$$\begin{aligned}&\left\langle A_{p(\cdot )}\left( u_\lambda \right) ,\left( {\overline{u}}_\lambda -u_\lambda \right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( u_\lambda \right) ,\left( {\overline{u}}_\lambda -u_\lambda \right) ^+\right\rangle \\&\quad =\int _{\Omega }\lambda \left[ {\overline{u}}_\lambda ^{-\eta (x)}+f\left( x,{\overline{u}}_\lambda \right) \right] \left( {\overline{u}}_\lambda -u_\lambda \right) ^+\mathop {}\!\mathrm {d}x\\&\quad \ge \int _{\Omega }\lambda {\overline{u}}_\lambda ^{-\eta (x)}\left( {\overline{u}}_\lambda -u_\lambda \right) ^+\mathop {}\!\mathrm {d}x\\&\quad = \left\langle A_{p(\cdot )}\left( {\overline{u}}_\lambda \right) ,\left( {\overline{u}}_\lambda -u_\lambda \right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( {\overline{u}}_\lambda \right) ,\left( {\overline{u}}_\lambda -u_\lambda \right) ^+\right\rangle . \end{aligned}$$
On account of Proposition 2.2 we conclude that \({\overline{u}}_\lambda \le u_\lambda \). Next, we choose \(h=\left( u_\lambda -{\tilde{u}}\right) ^+\in W^{1,p(\cdot )}_{0}(\Omega )\) in (4.6). Then, using (4.2), (4.5) and Proposition 4.1, one has
$$\begin{aligned}&\left\langle A_{p(\cdot )}\left( u_\lambda \right) ,\left( u_\lambda -{\tilde{u}}\right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( u_\lambda \right) ,\left( u_\lambda -{\tilde{u}}\right) ^+\right\rangle \\&\quad =\int _{\Omega }\lambda \left[ {\tilde{u}}^{-\eta (x)}+f\left( x,{\tilde{u}}\right) \right] \left( u_\lambda -{\tilde{u}}\right) ^+\mathop {}\!\mathrm {d}x\\&\quad \le \int _{\Omega }\left[ {\tilde{u}}^{-\eta (x)}+1\right] \left( u_\lambda -{\tilde{u}}\right) ^+\mathop {}\!\mathrm {d}x\\&\quad = \left\langle A_{p(\cdot )}\left( {\tilde{u}}\right) ,\left( u_\lambda -{\tilde{u}}\right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( {\tilde{u}}\right) ,\left( u_\lambda -{\tilde{u}}\right) ^+\right\rangle . \end{aligned}$$
As before, from Proposition 2.2 we see that \(u_\lambda \le {\tilde{u}}\).
In summary we have shown that \(u_\lambda \in [{\overline{u}}_\lambda ,{\tilde{u}}]\) for all \(\lambda \in (0,1]\) small enough. From (4.2) and (4.6) we see that \(u_\lambda \) is a solution of our original problem (\(\hbox {P}_\lambda \)), that is, \(u_\lambda \in {\mathcal {S}}_\lambda \). This proves the nonemptiness of \({\mathcal {L}}\).
Let us now prove the second assertion of the proposition. To this end, let \(u \in {\mathcal {S}}_\lambda \). Since \(f \ge 0\) by hypothesis H\(_1\)(i), we have that \({\overline{u}}_\lambda \le u\) and because \({\overline{u}}\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \), there exists \(c_6>0\) such that \(c_6{\hat{d}} \le u\), see Papageorgiou–Rădulescu–Repovš [17, p. 274]. This fact, hypothesis H\(_1\)(i) and Theorem B1 of Saoudi–Ghanmi [26] (see also Giacomoni–Schindler–Takáč [10]), we have that \(u\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \). Therefore, \({\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) for all \(\lambda \in {\mathcal {L}}\). \(\square \)
The next proposition shows that \({\mathcal {L}}\) is connected, that is, \({\mathcal {L}}\) is an interval.
Proposition 4.3
If hypotheses H\(_0\) and H\(_1\) hold, \(\lambda \in {\mathcal {L}}\) and \(\mu \in (0,\lambda )\), then \(\mu \in {\mathcal {L}}\).
Proof
Since \(\lambda \in {\mathcal {L}}\), there exists \(u \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \), see Proposition 4.2. Moreover, from Proposition 3.1 we know that
$$\begin{aligned} {\overline{u}}_\mu \le {\overline{u}}_\lambda \le u. \end{aligned}$$
(4.7)
Based on (4.7) we introduce the Carathéodory function \(g_\mu :\Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}\) defined by
$$\begin{aligned} g_\mu (x,s)= {\left\{ \begin{array}{ll} \mu \left[ {\overline{u}}_\mu (x)^{-\eta (x)}+f\left( x,{\overline{u}}_\mu (x)\right) \right] &{}\text {if } s<{\overline{u}}_\mu (x),\\ \mu \left[ s^{-\eta (x)}+f\left( x,s\right) \right] &{}\text {if } {\overline{u}}_\mu (x)\le s \le u(x),\\ \mu \left[ u(x)^{-\eta (x)}+f\left( x,u(x)\right) \right] &{}\text {if } u(x) <s. \end{array}\right. } \end{aligned}$$
(4.8)
We set \(G_\mu (x,s)=\int ^s_0g_\mu (x,t)\mathop {}\!\mathrm {d}t\) and consider the \(C^1\)-functional \(\varphi _\mu :W^{1,p(\cdot )}_0(\Omega )\rightarrow {\mathbb {R}}\) defined by
$$\begin{aligned} \varphi _\mu (u) =\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\mathop {}\!\mathrm {d}x+\int _{\Omega }\frac{1}{q(x)}|\nabla u|^{q(x)}\mathop {}\!\mathrm {d}x-\int _{\Omega }G_\mu (x,u)\mathop {}\!\mathrm {d}x \end{aligned}$$
for all \(u \in W^{1,p(\cdot )}_0(\Omega )\). It is clear that \(\varphi _\mu \) is coercive because of (4.8) and it is sequentially weakly lower semicontinuous. So, there exists \(u_\mu \in W^{1,p(\cdot )}_0(\Omega )\) such that
$$\begin{aligned} \varphi _\mu (u_\mu )=\min \left[ \varphi _\mu (u)\,:\, u \in W^{1,p(\cdot )}_0(\Omega )\right] . \end{aligned}$$
This implies, in particular, that \(\varphi '_\mu (u_\mu )=0\). Hence
$$\begin{aligned} \left\langle A_{p(\cdot )}\left( u_\mu \right) ,h\right\rangle +\left\langle A_{q(\cdot )}\left( u_\mu \right) ,h\right\rangle =\int _{\Omega }g_\mu \left( x,u_\mu \right) h\mathop {}\!\mathrm {d}x \end{aligned}$$
(4.9)
for all \(h \in W^{1,p(\cdot )}_0(\Omega )\). We first choose \(h=\left( {\overline{u}}_\mu -u_\mu \right) ^+\in W^{1,p(\cdot )}_0(\Omega )\) in (4.9). Applying (4.8), hypothesis H\(_1\)(i) and Proposition 3.1 yields
$$\begin{aligned}&\left\langle A_{p(\cdot )}\left( u_\mu \right) ,\left( {\overline{u}}_\mu -u_\mu \right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( u_\mu \right) ,\left( {\overline{u}}_\mu -u_\mu \right) ^+\right\rangle \\&\quad =\int _{\Omega }\mu \left[ {\overline{u}}_\mu ^{-\eta (x)}+f\left( x,{\overline{u}}_\mu \right) \right] \left( {\overline{u}}_\mu -u_\mu \right) ^+\mathop {}\!\mathrm {d}x\\&\quad \ge \int _{\Omega }\mu {\overline{u}}_\mu ^{-\eta (x)}\left( {\overline{u}}_\mu -u_\mu \right) ^+\mathop {}\!\mathrm {d}x\\&\quad =\left\langle A_{p(\cdot )}\left( {\overline{u}}_\mu \right) ,\left( {\overline{u}}_\mu -u_\mu \right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( {\overline{u}}_\mu \right) ,\left( {\overline{u}}_\mu -u_\mu \right) ^+\right\rangle . \end{aligned}$$
Proposition 2.2 then implies that \({\overline{u}}_\lambda \le u_\mu \). Now we choose \(h=\left( u_\mu -u\right) ^+\in W^{1,p(\cdot )}_0(\Omega )\) in (4.9). Then, from (4.8), \(\mu <\lambda \) and \(u\in {\mathcal {S}}_\lambda \), we derive
$$\begin{aligned}&\left\langle A_{p(\cdot )}\left( u_\mu \right) ,\left( u_\mu -u\right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( u_\mu \right) ,\left( u_\mu -u\right) ^+\right\rangle \\&\quad =\int _{\Omega }\mu \left[ u^{-\eta (x)}+f\left( x,u_\lambda \right) \right] \left( u_\mu -u\right) ^+\mathop {}\!\mathrm {d}x\\&\quad \le \int _{\Omega }\lambda \left[ u^{-\eta (x)}+ f\left( x,u\right) \right] \left( u_\mu -u\right) ^+\mathop {}\!\mathrm {d}x\\&\quad =\left\langle A_{p(\cdot )}\left( u \right) ,\left( u_\mu -u\right) ^+\right\rangle +\left\langle A_{q(\cdot )}\left( u\right) ,\left( u_\mu -u\right) ^+\right\rangle . \end{aligned}$$
Thus, \(u_\mu \le u\). Therefore we have proved that
$$\begin{aligned} u_\mu \in \left[ {\overline{u}}_\mu ,u\right] . \end{aligned}$$
(4.10)
From (4.10), (4.8) and (4.9) it follows that
$$\begin{aligned} u_\mu \in {\mathcal {S}}_\mu \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \end{aligned}$$
and so \(\mu \in {\mathcal {L}}\). \(\square \)
An immediate consequence of the proof above is the following corollary.
Corollary 4.4
If hypotheses H\(_0\) and H\(_1\) hold and if \(\lambda \in {\mathcal {L}}, u \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) and \(0<\mu <\lambda \), then \(\mu \in {\mathcal {L}}\) and there exists \(u_\mu \in {\mathcal {S}}_\mu \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) such that \(u_\mu \le u\).
We can improve the conclusion of this corollary.
Proposition 4.5
If hypotheses H\(_0\) and H\(_1\) hold and \(\lambda \in {\mathcal {L}}, u \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) and \(0<\mu <\lambda \), then \(\mu \in {\mathcal {L}}\) and there exists \(u_\mu \in {\mathcal {S}}_\mu \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) such that
$$\begin{aligned} u-u_\mu \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) . \end{aligned}$$
Proof
From Corollary 4.4 we already know that \(\mu \in {\mathcal {L}}\) and that we can find \(u_\mu \in {\mathcal {S}}_\mu \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) such that
$$\begin{aligned} {\overline{u}}_\mu \le u_\mu \le u. \end{aligned}$$
(4.11)
Now, let \(\rho =\Vert u\Vert _\infty \) and let \({\hat{\xi }}_\rho >0\) be as given in hypothesis H\(_1\)(v). Since \(\mu <\lambda \), \(u_\mu \in {\mathcal {S}}_\mu \) and due to (4.11), hypothesis H\(_1\)(v) and \(f \ge 0\), we have
$$\begin{aligned} \begin{aligned}&-\Delta _{p(\cdot )}u_\mu -\Delta _{q(\cdot )}u_\mu +\lambda {\hat{\xi }}_\rho u_\mu ^{p(x)-1}-\lambda u_\mu ^{-\eta (x)}\\&\quad < -\Delta _{p(\cdot )}u_\mu -\Delta _{q(\cdot )}u_\mu +\lambda {\hat{\xi }}_\rho u_\mu ^{p(x)-1}-\mu u_\mu ^{-\eta (x)}\\&\quad =\mu f \left( x,u_\mu \right) +\lambda {\hat{\xi }}_\rho u_\mu ^{p(x)-1}\\&\quad \le \lambda \left[ f \left( x,u_\mu \right) +{\hat{\xi }}_\rho u_\mu ^{p(x)-1}\right] -(\lambda -\mu )f(x,u_\mu )\\&\quad \le \lambda \left[ f \left( x,u\right) +{\hat{\xi }}_\rho u^{p(x)-1}\right] \\&\quad =-\Delta _{p(\cdot )}u-\Delta _{q(\cdot )}u+\lambda {\hat{\xi }}_\rho u^{p(x)-1}-\lambda u^{-\eta (x)}. \end{aligned} \end{aligned}$$
(4.12)
Since \(u_\mu \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \), using hypothesis H\(_1\)(iv), we see that
$$\begin{aligned} 0 \preceq [\lambda -\mu ]f(\cdot ,u_\mu (\cdot )). \end{aligned}$$
Then, from (4.12) and Proposition 2.3, we conclude that
$$\begin{aligned} u-u_\mu \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) . \end{aligned}$$
\(\square \)
Remark 4.6
In the same way as in the proof of Proposition 4.5, we can also show that
$$\begin{aligned} u_\mu -{\overline{u}}_\mu \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) . \end{aligned}$$
(4.13)
Let \(\lambda ^*=\sup {\mathcal {L}}\). The next proposition shows that \(\lambda ^*\) is finite.
Proposition 4.7
If hypotheses H\(_0\) and H\(_1\) hold, then \(\lambda ^*<+\infty \).
Proof
From Hypotheses H\(_1\)(i)–(iv) we see that there exists \({\hat{\lambda }}>0\) large enough such that
$$\begin{aligned} {\hat{\lambda }}f(x,s)\ge s^{p(x)-1} \quad \text {for a. a. }x\in \Omega \text { and for all }s\ge 0. \end{aligned}$$
(4.14)
Let \(\lambda >{\hat{\lambda }}\) and suppose that \(\lambda \in {\mathcal {L}}\). Then we can find \(u\in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \). Let \(\Omega _0\subseteq \Omega \) be an open subset with \(C^2\)-boundary such that \({\overline{\Omega }}_0\subseteq \Omega \) and u is not constant on \({\overline{\Omega }}_0\). We define \(m_0=\min _{x\in {\overline{\Omega }}_0}u(x)\). Since \(u \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) it is clear that \(m_0>0\). For \(\delta \in (0,\Vert u\Vert _\infty -m_0)\) we set \(m_0^\delta =m_0+\delta \). Further, for \(\rho =\Vert u\Vert _\infty \) let \({\hat{\xi }}_\rho >0\) be as given by hypothesis H\(_1\)(v). First, for \(\delta \) small enough, we observe that
$$\begin{aligned} \frac{1}{m_0^{\eta (x)}}-\frac{1}{\left( m_0+\delta \right) ^{\eta (x)}} = \frac{(m_0+\delta )^{\eta (x)}-m_0^{\eta (x)}}{\left[ m_0(m_0+\delta )\right] ^{\eta (x)}} \le \left( \frac{\delta }{m_0^2}\right) ^{\eta (x)} \le \left( \frac{\delta }{m_0^2}\right) ^{\eta _-} \end{aligned}$$
(4.15)
for all \(x \in {\overline{\Omega }}\). Then, applying (4.15), (4.14), hypotheses H\(_1\)(iv), (v), \(u\in {\mathcal {S}}_\lambda \) and \(\delta >0\) small enough, we have
$$\begin{aligned} \begin{aligned}&-\Delta _{p(\cdot )}m_0^\delta -\Delta _{q(\cdot )}m_0^\delta +\left[ \lambda {\hat{\xi }}_\rho +1\right] \left( m_0^\delta \right) ^{p(x)}-\lambda \left( m_0^\delta \right) ^{-\eta (x)}\\&\quad \le \left[ \lambda {\hat{\xi }}_\rho +1\right] m_0^{p(x)-1}+\chi (\delta ) \quad \text {with }\chi (\delta )\rightarrow 0^+ \text { as }\delta \rightarrow 0^+,\\&\quad \le {\hat{\lambda }} f(x,m_0)+ \lambda {\hat{\xi }}_\rho m_0^{p(x)-1}+\chi (\delta )\\&\quad = \lambda \left[ f(x,m_0)+ {\hat{\xi }}_\rho m_0^{p(x)-1}\right] -\left( \lambda -{\hat{\lambda }}\right) f(x,m_0)+\chi (\delta )\\&\quad \le \lambda \left[ f(x,m_0)+ {\hat{\xi }}_\rho m_0^{p(x)-1}\right] \\&\quad \le \lambda \left[ f(x,u)+ {\hat{\xi }}_\rho u^{p(x)-1}\right] \\&\quad =-\Delta _{p(\cdot )}u-\Delta _{q(\cdot )}u+\lambda {\hat{\xi }}_\rho u^{p(x)-1}-\lambda u^{-\eta (x)} \quad \text {in }\Omega _0. \end{aligned} \end{aligned}$$
(4.16)
For \(\delta >0\) small enough, because of hypothesis H\(_1\)(iv), we know that
$$\begin{aligned} 0<{\tilde{\eta }}_0 \le \left[ \lambda -{\hat{\lambda }}\right] f(x,m_0)-\chi (\delta ) . \end{aligned}$$
Then, from (4.16) and Proposition 2.4, we infer that
$$\begin{aligned} 0<u(x)-m_0^\delta \quad \text {for all }x\in \Omega \text { and for all small }\delta >0. \end{aligned}$$
This is a contradiction to the definition of \(m_0>0\). Therefore, \(\lambda \not \in {\mathcal {L}}\) and so \(\lambda ^*\le {\hat{\lambda }}<\infty \). \(\square \)
We have just proved that \((0,\lambda ^*)\subseteq {\mathcal {L}}\subseteq (0,\lambda ^*]\). Next we show that our original problem (\(\hbox {P}_\lambda \)) has at least two positive smooth solution for \(\lambda \in (0,\lambda ^*)\).
Proposition 4.8
If hypotheses H\(_0\) and H\(_1\) hold and if \(\lambda \in (0,\lambda ^*)\), then problem (\(\hbox {P}_\lambda \)) has at least two positive solutions
$$\begin{aligned} u_0, {\hat{u}} \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \text { with }u_0 \ne {\hat{u}}. \end{aligned}$$
Proof
Let \(\vartheta \in (\lambda ,\lambda ^*)\subseteq {\mathcal {L}}\) and let \(u_\vartheta \in {\mathcal {S}}_\vartheta \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \). From Proposition 4.5 and (4.13) we know there exists \(u_0 \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) such that
We introduce the Carathéodory function \(k_\lambda :\Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}\) defined by
$$\begin{aligned} k_\lambda (x,s)= {\left\{ \begin{array}{ll} \lambda \left[ {\overline{u}}_\lambda (x)^{-\eta (x)}+ f\left( x,{\overline{u}}_\lambda (x)\right) \right] &{}\text {if }s \le {\overline{u}}_\lambda (x),\\ \lambda \left[ s^{-\eta (x)}+f\left( x,s\right) \right] &{}\text {if }{\overline{u}}_\lambda (x)<s. \end{array}\right. } \end{aligned}$$
(4.18)
We set \(K_\lambda (x,s)=\int ^s_0 k_\lambda (x,t)\mathop {}\!\mathrm {d}t\) and consider the \(C^1\)-functional \(\sigma _{\lambda }:W^{1,p(\cdot )}_0(\Omega )\rightarrow {\mathbb {R}}\) defined by
$$\begin{aligned} \sigma _\lambda (u)&=\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\mathop {}\!\mathrm {d}x +\int _{\Omega }\frac{1}{q(x)}|\nabla u|^{q(x)}\mathop {}\!\mathrm {d}x-\int _{\Omega }K_\lambda (x,u)\mathop {}\!\mathrm {d}x \end{aligned}$$
for all \(u \in W^{1,p(\cdot )}_0(\Omega )\).
Using (4.18) we can easily show that
$$\begin{aligned} K_{\sigma _\lambda }\subseteq [{\overline{u}}_\lambda ) \cap {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) . \end{aligned}$$
(4.19)
Hence we may assume that
$$\begin{aligned} K_{\sigma _\lambda }\cap [{\overline{u}}_\lambda ,u_\vartheta ]=\{u_0\}, \end{aligned}$$
(4.20)
otherwise we already have a second positive smooth solution of (\(\hbox {P}_\lambda \)) and so we are done, see (4.19) and (4.18).
We truncate \(k_\lambda (x,\cdot )\) at \(u_\vartheta (x)\). This is done by the Carathéodory function \({\hat{k}}_\lambda :\Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}\) defined by
$$\begin{aligned} {\hat{k}}_\lambda (x,s)= {\left\{ \begin{array}{ll} k_\lambda (x,s) &{} \text {if } s \le u_\vartheta (x),\\ k_\lambda \left( x,u_\vartheta (x)\right) &{} \text {if } u_\vartheta (x)<s. \end{array}\right. } \end{aligned}$$
(4.21)
We set \({\hat{K}}_\lambda (x,s)=\int ^s_0 {\hat{k}}_\lambda (x,t)\mathop {}\!\mathrm {d}t\) and consider the \(C^1\)-functional \({\hat{\sigma }}_\lambda :W^{1,p(\cdot )}_0(\Omega )\rightarrow {\mathbb {R}}\) defined by
$$\begin{aligned} {\hat{\sigma }}_\lambda (u)&=\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\mathop {}\!\mathrm {d}x +\int _{\Omega }\frac{1}{q(x)}|\nabla u|^{q(x)}\mathop {}\!\mathrm {d}x-\int _{\Omega }{\hat{K}}_\lambda (x,u)\mathop {}\!\mathrm {d}x \end{aligned}$$
for all \(u \in W^{1,p(\cdot )}_0(\Omega )\).
Looking at (4.18) and (4.21) we see that
$$\begin{aligned} {\hat{\sigma }}_\lambda \big |_{[0,u_\vartheta ]}=\sigma _\lambda \big |_{[0,u_\vartheta ]} \quad \text {and}\quad {\hat{\sigma }}'_\lambda \big |_{[0,u_\vartheta ]}=\sigma '_\lambda \big |_{[0,u_\vartheta ]}. \end{aligned}$$
(4.22)
Further, from (4.21) it is clear that
$$\begin{aligned} K_{{\hat{\sigma }}_\lambda }\subseteq [{\overline{u}}_\lambda ,u_\vartheta ]\cap {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) . \end{aligned}$$
(4.23)
From the definition of the truncations in (4.18) and (4.21) we know that \({\hat{\sigma }}_\lambda \) is coercive and it is also sequentially weakly lower semicontinuous. Thus, we can find \({\tilde{u}}_0\in W^{1,p(\cdot )}_0(\Omega )\) such that
$$\begin{aligned} {\hat{\sigma }}_\lambda \left( {\tilde{u}}_0\right) =\min \left[ {\hat{\sigma }}_\lambda (u)\,:\,u\in W^{1,p(\cdot )}_0(\Omega )\right] . \end{aligned}$$
Taking (4.23), (4.22), (4.20) into account we conclude that \({\tilde{u}}_0=u_0\). Then, on account of (4.17) and (4.22), \(u_0 \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) is a local \(C^1_0({\overline{\Omega }})\)-minimizer of \(\sigma _\lambda \). The results of Tan–Fang [27] imply that
$$\begin{aligned} u_0\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \text {is a }W^{1,p(\cdot )}_{0}(\Omega )\text {-minimizer of }\sigma _\lambda . \end{aligned}$$
(4.24)
From (4.19) it is clear that we may assume that \(K_{\sigma _\lambda }\) is finite otherwise we would have a sequence of distinct positive solutions of (\(\hbox {P}_\lambda \)) and so we would have done. The finiteness of \(K_{\sigma _\lambda }\) along with (4.24) and Theorem 5.7.6 of Papageorgiou–Rădulescu–Repovš [17, p. 449] imply that we can find \({\hat{\rho }} \in (0,1)\) small enough such that
$$\begin{aligned} \sigma _\lambda (u_0)<\inf \left[ \sigma _\lambda (u)\,:\, \Vert u-u_0\Vert ={\hat{\rho }} \right] =m_\lambda . \end{aligned}$$
(4.25)
Reasoning as in the proof of Proposition 4.1 of Gasiński–Papageorgiou [9] we can show that
$$\begin{aligned} \sigma _\lambda \text { satisfies the }C\text {-condition}. \end{aligned}$$
(4.26)
Moreover, if \(u \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \), then on account of hypothesis H\(_1\)(ii) and (4.18), we have
$$\begin{aligned} \sigma _\lambda (tu)\rightarrow -\infty \quad \text {as }t\rightarrow +\infty . \end{aligned}$$
(4.27)
Then, (4.25), (4.26) and (4.27) permit us the use of the mountain pass theorem. Hence, there exists \({\hat{u}}\in W^{1,p(\cdot )}_0(\Omega )\) such that
$$\begin{aligned} {\hat{u}} \in K_{\sigma _\lambda } \subseteq [{\overline{u}}_\lambda )\cap {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) , \end{aligned}$$
see (4.19), and
$$\begin{aligned} m_\lambda \le \sigma _\lambda \left( {\hat{u}}\right) , \end{aligned}$$
see (4.25). Taking (4.18) and (4.25) into account we conclude that \({\hat{u}} \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) is a solution of (\(\hbox {P}_\lambda \)) for \(\lambda \in \left( 0,\lambda ^*\right) \) with \({\hat{u}}\ne u_0\). \(\square \)
Next we will check the admissibility of the critical parameter \(\lambda ^*>0\).
Proposition 4.9
If hypotheses H\(_0\) and H\(_1\) hold, then \(\lambda ^* \in {\mathcal {L}}\), that is, \({\mathcal {L}}=(0,\lambda ^*]\).
Proof
Let \(\{\lambda _n\}_{n\in {\mathbb {N}}} \subseteq (0,\lambda ^*)\subseteq {\mathcal {L}}\) be such that \(\lambda _n\nearrow \lambda ^*\) as \(n \rightarrow \infty \). Let \({\overline{u}}_1={\overline{u}}_{\lambda _1}\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) be the unique solution of (\(\hbox {Au}_\lambda \)) for \(\lambda =\lambda _1\) obtained in Proposition 3.1. By hypothesis H\(_1\)(i) we know that \(f \ge 0\). Then from (4.18) we get that \(\sigma _{\lambda _1}({\overline{u}}_1)\le 0\). Hence,
$$\begin{aligned} \sigma _{\lambda _n}\left( {\overline{u}}_1\right) \le 0 \quad \text {for all }n\in {\mathbb {N}}, \end{aligned}$$
(4.28)
since \(\lambda _1\le \lambda _n\) for all \(n \in {\mathbb {N}}\).
From the proof of Proposition 4.8 we know there exists \(u_n \in {\mathcal {S}}_{\lambda _n} \subseteq {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) \) such that \({\overline{u}}_1 \le u_n\) and
$$\begin{aligned} \sigma _{\lambda _n}(u_n) \le \sigma _{\lambda _n}({\overline{u}}_1)\le 0 \quad \text {for all }n\in {\mathbb {N}}, \end{aligned}$$
(4.29)
see (4.28). Since \(u_n \in {\mathcal {S}}_{\lambda _n}\) it holds
$$\begin{aligned} \sigma '_{\lambda _n}(u_n)=0\quad \text {for all }n\in {\mathbb {N}}. \end{aligned}$$
(4.30)
From (4.29), (4.30) and Proposition 4.1 of Gasiński–Papageorgiou [9] we can conclude that \(\{u_n\}_{n\in {\mathbb {N}}}\subseteq W^{1,p(\cdot )}_{0}(\Omega )\) is bounded. So, we may assume that
$$\begin{aligned} u_n\overset{{{\,\mathrm{w}\,}}}{\rightarrow }u_* \quad \text {in }W^{1,p(\cdot )}_{0}(\Omega )\quad \text {and}\quad u_n\rightarrow u_* \quad \text {in }L^{r(\cdot )}(\Omega ). \end{aligned}$$
(4.31)
From (4.30) we have
$$\begin{aligned} \left\langle A_{p(\cdot )}\left( u_n\right) ,h\right\rangle +\left\langle A_{q(\cdot )}\left( u_n\right) ,h\right\rangle =\int _{\Omega }k_\lambda \left( x,u_n\right) h\mathop {}\!\mathrm {d}x \end{aligned}$$
(4.32)
for all \(h \in W^{1,p(\cdot )}_0(\Omega )\) and for all \(n \in {\mathbb {N}}\).
We take \(h=u_n-u_*\in W^{1,p(\cdot )}_{0}(\Omega )\) as test function (4.32). Applying (4.31) and hypothesis H\(_1\)(i) gives
$$\begin{aligned} \lim _{n\rightarrow \infty } \left[ \left\langle A_{p(\cdot )}(u_n),u_n-u_*\right\rangle +\left\langle A_{q(\cdot )}(u_n),u_n-u_*\right\rangle \right] =0. \end{aligned}$$
Since \(A_{q(\cdot )}\) is monotone, see Proposition 2.2, we obtain
$$\begin{aligned} \limsup _{n\rightarrow \infty } \left[ \left\langle A_{p(\cdot )}(u_n),u_n-u_*\right\rangle +\left\langle A_{q(\cdot )}(u_*),u_n-u_*\right\rangle \right] \le 0. \end{aligned}$$
Then, by using (4.31), it follows
$$\begin{aligned} \limsup _{n\rightarrow \infty } \left\langle A_{p(\cdot )}(u_n),u_n-u_*\right\rangle \le 0. \end{aligned}$$
From this and Proposition 2.2 we conclude that
$$\begin{aligned} u_n\rightarrow u_* \quad \text {in }W^{1,p(\cdot )}_{0}(\Omega )\quad \text {and}\quad {\overline{u}}_1 \le u_*. \end{aligned}$$
(4.33)
If we now pass to the limit in (4.32) as \(n\rightarrow \infty \), then, by applying (4.33), we see that \(u_* \in {\mathcal {S}}_{\lambda ^*}\) and so \(\lambda ^*\in {\mathcal {L}}\), that is, \({\mathcal {L}}=(0,\lambda ^*]\). \(\square \)
In summary, we can state the following bifurcation-type result concerning problem (\(\hbox {P}_\lambda \)).
Theorem 4.10
If hypotheses H\(_0\) and H\(_1\) hold, then there exists \(\lambda ^*>0\) such that
-
(a)
for every \(\lambda \in (0,\lambda ^*)\), problem (\(\hbox {P}_\lambda \)) has at least two positive solutions
$$\begin{aligned} u_0, {\hat{u}} \in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) , \quad u_0\ne {\hat{u}}; \end{aligned}$$
-
(b)
for \(\lambda =\lambda ^*\), problem (\(\hbox {P}_\lambda \)) has at least one positive solution
$$\begin{aligned} u_*\in {{\,\mathrm{int}\,}}\left( C^1_0({\overline{\Omega }})_+\right) ; \end{aligned}$$
-
(c)
for every \(\lambda >\lambda ^*\), problem (\(\hbox {P}_\lambda \)) has no positive solutions.