Skip to main content
Log in

Pseudo-harmonic Maps from Complete Noncompact Pseudo-Hermitian Manifolds to Regular Balls

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we give an estimate of sub-Laplacian of Riemannian distance functions in pseudo-Hermitian geometry which plays a similar role as Laplacian comparison theorem in Riemannian geometry, and deduce a prior horizontal gradient estimate of pseudo-harmonic maps from pseudo-Hermitian manifolds to regular balls of Riemannian manifolds. As an application, Liouville theorem is established under the conditions of nonnegative pseudo-Hermitian Ricci curvature and vanishing pseudo-Hermitian torsion. Moreover, we obtain the existence of pseudo-harmonic maps from complete noncompact pseudo-Hermitian manifolds to regular balls of Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Lee, P.W.Y.: Bishop and Laplacian comparison theorems on three-dimensional contact sub-riemannian manifolds with symmetry. J. Geom. Anal. 25(1), 512–535 (2015)

    Article  MathSciNet  Google Scholar 

  2. Barletta, E., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J. 50(2), 719–746 (2001)

    Article  MathSciNet  Google Scholar 

  3. Baudoin, F., Grong, E., Kuwada, K., Thalmaier, A.: Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations (2017). arXiv:1706.08489

  4. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  5. Chang, S.C., Chang, T.H.: On the existence of pseudoharmonic maps from pseudohermitian manifolds into Riemannian manifolds with nonpositive sectional curvature. Asian J. Math. 17(1), 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chang, S.C., Kuo, T.J., Lin, C., Tie, J.Z.: CR sub-Laplacian comparison and liouville-type theorem in a complete noncompact sasakian manifold. J. Geom. Anal. 29(2), 1676–1705 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chen, Q., Jost, J., Qiu, H.B.: Existence and Liouville theorems for \(V\)-harmonic maps from complete manifolds. Ann. Global Anal. Geom. 42(4), 565–584 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cheng, S.Y.: Liouville theorem for harmonic maps. In: Proceedings of Symposia in Pure Mathematics, vol. 36, pp. 147–151. American Mathematical Society, Providence, RI (1980)

  9. Choi, H.I.: On the Liouville theorem for harmonic maps. Proc. Am. Math. Soc. 85(1), 91–94 (1982)

    Article  MathSciNet  Google Scholar 

  10. Ding, W.Y., Wang, Y.D.: Harmonic maps of complete noncompact Riemannian manifolds. Int. J. Math. Anal. 2(6), 617–633 (1991)

    Article  MathSciNet  Google Scholar 

  11. Do Carmo, M.P.: Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Basel (1992). Translated by Francis Flaherty

  12. Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds. Progress in Mathematics, vol. 246. Birkhäuser Boston, Inc. (2006)

  13. Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial }_b\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  Google Scholar 

  14. Greenleaf, A.: The first eigenvalue of a sublaplacian on a pseudohermitian manifold. Commun. Partial Differ. Equ. 10(2), 191–217 (1985)

    Article  Google Scholar 

  15. Jost, J., Xu, C.J.: Subelliptic harmonic maps. Trans. Am. Math. Soc. 350(11), 4633–4649 (1998)

    Article  MathSciNet  Google Scholar 

  16. Lee, P.W.Y., Li, C.: Bishop and Laplacian comparison theorems on Sasakian manifolds. Commun. Anal. Geom. 26(4), 915–954 (2018)

    Article  MathSciNet  Google Scholar 

  17. Li, P., Tam, L.F.: The heat equation and harmonic maps of complete manifolds. Invent. Math. 105(1), 1–46 (1991)

    Article  MathSciNet  Google Scholar 

  18. Li, J.Y., Wang, S.L.: The heat flows and harmonic maps from complete manifolds into regular balls. Bull. Aust. Math. Soc. 58(2), 177–187 (1998)

    Article  MathSciNet  Google Scholar 

  19. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)

    Article  MathSciNet  Google Scholar 

  20. Ni, L.: Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds. Math. Z. 232(2), 331–355 (1999)

    Article  MathSciNet  Google Scholar 

  21. Ren, Y., Yang, G.: Pseudo-harmonic maps from closed pseudo-Hermitian manifolds to Riemannian manifolds with nonpositive sectional curvature. Calc. Var. Partial Differ. Equ. 57(5), 128 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ren, Y.B., Yang, G.L., Chong, T.: Liouville theorem for pseudoharmonic maps from Sasakian manifolds. J. Geom. Phys. 81, 47–61 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  24. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)

    Article  MathSciNet  Google Scholar 

  25. Tanaka, N.: A Differential Geometric Study on Strongly Pseudo-convex Manifolds, vol. 9. Lectures in Mathematics, Department of Mathematics, Kyoto University. Kinokuniya Book-Store Co. (1975)

  26. Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13(1), 25–41 (1978)

    Article  MathSciNet  Google Scholar 

  27. Xu, C.J., Zuily, C.: Higher interior regularity for quasilinear subelliptic systems. Calc. Var. Partial Differ. Equ. 5(4), 323–343 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Dong: Supported by NSFC Grant No. 11771087 and LMNS, Fudan. Y. Ren: Supported by NSFC Grant No. 11801517.

Appendix

Appendix

This section will deduce Theorems 2.4 and 5.1 by the theory of subelliptic analysis. Suppose that \( (M, \theta ) \) is a pseudo-Hermitian manifold of real dimension \(2m +1\). Let \(\Omega \) be a coordinate neighborhood in M and \(\{ e_B \}_{B=1}^{2m}\) be an orthonormal basis of \(HM \big |_\Omega \) with \(J e_i = e_{i +m}\) for \(i = 1, 2, \dots , m\). Since

$$\begin{aligned} -\, \theta ([e_i, J e_i]) = \mathrm{d} \theta (e_i, J e_i) = G_\theta (e_i, e_i) = 1, \quad \text{ for } i = 1, 2, \dots , m, \end{aligned}$$

then each \([e_i, J e_i]\) is transversal with horizontal distribution which implies that HM satisfies the strong bracket generating hypothesis. Moreover, by identifying \(\Omega \) with a domain in \({\mathbb {R}}^{2m+1}\), the vector fields \(\{e_1, \dots , e_{2m} \}\) satisfy the Hörmander’s condition. Let \(e_B^*\) be the formal adjoint of \(e_B\). For any \(u \in C^\infty (\Omega )\), we have

$$\begin{aligned} \Delta _b u = - \sum _{B =1}^{2m} e_B^* e_B u, \end{aligned}$$

which shows that the sub-Laplacian operator is subelliptic. One can refer to [12, Sect. 2.2] for more discussions. Since Tanaka–Webster connection preserves the horizontal distribution, then the higher-order horizontal covariant derivative on \(\Omega \) can be expressed as follows:

$$\begin{aligned} \nabla _b^l u (e_{B_1}, \cdots , e_{B_l})&= \nabla _{e_{B_l}} \bigg [ \nabla ^{l-1} u (e_{B_1}, \cdots , e_{B_{l-1}}) \bigg ] \\&\quad - \sum _{i = 1}^{l} \nabla ^{l-1} u (e_{B_1}, \cdots , \nabla _{e_{B_l}} e_{B_i}, \cdots , e_{B_l}) \\&= \cdots \\&= e_{B_l} e_{B_{l-1}} \cdots e_{B_1} u + \text{ lower } \text{ order } \text{ terms }, \end{aligned}$$

for any \(B_1, \cdots , B_l \in \{1, 2, \cdots , 2m\} \), which implies that the \(S^p_k\)-norm on \(\Omega \) is equivalent with the local Folland–Stein Sobolev norm (cf. [12, p. 193]). Hence local results of subelliptic analysis always hold for the sub-Laplacian operator on a coordinate neighborhood of pseudo-Hermitian manifolds. By partition of unity, the domain can be generalized to a relatively compact domain in a pseudo-Hermitian manifold. Let us use this idea to prove Theorem 2.4 by the following local version.

Theorem 6.1

([12, Theorem 3.17] and [23, Theorem 16]) Suppose that \((M,\theta )\) is a pseudo-Hermitian manifold and \(\Omega \Subset M\) is a coordinate neighborhood. Assume that \(u, v \in L_{loc}^1 (\Omega )\) and \(\Delta _b u = v\) in the distribution sense. For any \(\chi \in C^\infty _0 (\Omega )\), if \(v \in S^p_k (\Omega ) \) with \(p >1\) and \(k \in {\mathbb {N}}\), then \(\chi u \in S^p_{k+2} (\Omega )\) and

$$\begin{aligned} ||\chi u||_{S^p_{k+2} (\Omega )} \le C_{\chi } \left( ||u||_{L^p (\Omega )} + ||v||_{S^p_k (\Omega )} \right) , \end{aligned}$$
(6.1)

where \(C_{\chi }\) only depends on \(\chi \).

Proof of Theorem 2.4

Let \(\{\Omega _\alpha \}\) be a finite open cover of \( {\text {supp}} \chi \) and \(\{\chi _\alpha \}\) be a partition of unity subordinating to \(\{\Omega _\alpha \}\). Since \(\Delta _b u = v\) holds in each \(\Omega _\alpha \), Theorem 1 guarantees that

$$\begin{aligned} || \chi _\alpha \chi u||_{S^p_{k+2} (\Omega _\alpha )} \le C_{\chi _\alpha \chi } \left( ||u||_{L^p (\Omega _\alpha )} + ||v||_{S^p_k (\Omega _\alpha )} \right) , \end{aligned}$$

which implies that

$$\begin{aligned} ||\chi u||_{S^p_{k+2} (\Omega )} \le \sum _\alpha ||\chi u||_{S^p_{k+2} (\Omega _\alpha )} \le \left( \sum _\alpha C_{\chi _\alpha \chi } \right) \left( ||u||_{L^p (\Omega )} + ||v||_{S^p_k (\Omega )} \right) . \end{aligned}$$

The proof is finished by setting \(C_\chi = \sum _\alpha C_{\chi _\alpha \chi }\). \(\square \)

Next let us prove Theorem 5.1.

Proof of Theorem 5.1

Under the exponential map at \(p_0 \in N\), the regular ball \(B_D = B_D (p_0)\) is diffeomorphic to the ball \(B_D\) with radius D and centered at the origin in \({\mathbb {R}}^n\) where \(n = {\text {dim}} N\). Let \(\{z^i\}_{i=1}^n\) be the geodesic normal coordinates at \(p_0\) and \(f^i = z^i \circ f\) be the components of a function \(f : M \rightarrow B_D\). Denote

$$\begin{aligned} {\mathcal {S}} = \left\{ f \in S^2_1 (M, {\mathbb {R}}^n) \bigg | \, f - \varphi \in S^2_{1,0} (M, {\mathbb {R}}^n), \ \sup _M |f| \le D \right\} , \end{aligned}$$

where \(|\cdot |\) is the Euclidean norm in \({\mathbb {R}}^n\). Consider the minimizing problem

$$\begin{aligned} \lambda = \inf _{f \in {\mathcal {S}}} E_H (f) = \inf _{f \in {\mathcal {S}}} \int _M h_{ij} (f) \langle \nabla _b f^i, \nabla _b f^j, \rangle \end{aligned}$$
(6.2)

where \( h_{ij} = h (\frac{\partial }{\partial z^i}, \frac{\partial }{\partial z^j}) \). Since \( \varphi \in {\mathcal {S}} \), then \( \lambda \) is finite. Let \( \{f_s\}_{s =1}^\infty \) be a minimizing sequence of (6.2) which have uniform \( S^2_1\)-norm bound. By CR compact embedding theorem of Folland–Stein space (cf. Theorem 3.15 in [12]), there are a \( f \in S^2_1 (M , {\mathbb {R}}^n) \) and a subsequence of \( \{f_s\} \) (also denoted by \( \{f_s\} \)) such that

  1. (i)

    \( f_s \rightarrow f \) strongly in \( L^2 (M, {\mathbb {R}}^n) \);

  2. (ii)

    \( f_s \rightharpoonup f \) weakly in \( S^2_1 (M, {\mathbb {R}}^n) \).

By (1), \( f_s \) converges to f almost everywhere on M which implies that \( |f| \le D \); by (1), \( f - \varphi \in S^2_{1,0} (M, {\mathbb {R}}^n) \) which is closed in \( S^2_1 (M, {\mathbb {R}}^n) \). Hence \( f \in {\mathcal {S}} \).

We claim that

$$\begin{aligned} E_H (f) \le \liminf _{s \rightarrow \infty } E_H (f_s). \end{aligned}$$
(6.3)

It suffices to show that for any domain \( \Omega \subset M \) with an orthonormal basis \( \{e_A\}_{A = 1}^{2m} \) of \( HM \big |_{\Omega } \),

$$\begin{aligned} \sum _{i, j, A} \int _\Omega h_{ij} (f) e_A f^i \, e_A f^j \le \liminf _{s \rightarrow \infty } \sum _{i, j, A} \int _\Omega h_{ij} (f_s) e_A f^i_s \, e_A f^j_s. \end{aligned}$$
(6.4)

For any \( \varepsilon > 0 \), since \(f^i \in S^2_1 (\Omega )\) and \( f_s^i \rightarrow f^i \) strongly in \( L^2 (\Omega ) \), there is a compact set \( K \subset \Omega \) such that

$$\begin{aligned} \sum _{i, j, A} \int _{\Omega \setminus K} h_{ij} (f) e_A f^i \, e_A f^j < \varepsilon \quad \text{ and } \quad f^i_s \rightrightarrows f^i \quad \text{ on } K, \end{aligned}$$

where “\(\rightrightarrows \)” means “uniform convergence”. The positivity of \( (h_{ij}) \) implies that

$$\begin{aligned} 0&\le \sum _{i, j, A} h_{ij} (f_s) e_A (f^i_s - f^i) \, e_A (f^j_s - f^j) \\&= \sum _{i, j, A} h_{ij} (f_s) e_A f^i_s \, e_A f^j_s - \sum _{i, j, A} h_{ij} (f_s) e_A f^i \, e_A f^j \\&\quad - 2 \sum _{i, j, A} h_{ij} (f_s) e_A f^i \, e_A (f^j_s - f^j) , \end{aligned}$$

which yields that

$$\begin{aligned} \sum _{i, j, A} \int _K h_{ij} (f_s) e_A f^i_s \, e_A f^j_s&\ge \sum _{i, j, A} \int _K h_{ij} (f_s) e_A f^i \, e_A f^j \nonumber \\&\quad + \,2 \sum _{i, j, A} \int _K h_{ij} (f_s) e_A f^i \, e_A (f^j_s - f^j) \nonumber \\&= \sum _{i, j, A} \int _K h_{ij} (f_s) e_A f^i \, e_A f^j \nonumber \\&\quad + \,2 \sum _{i, j, A} \int _K (h_{ij} (f_s) - h_{ij} (f)) e_A f^i \, e_A (f^j_s - f^j) \nonumber \\&\quad +\, 2 \sum _{i, j, A} \int _K h_{ij} (f) e_A f^i \, e_A (f^j_s- f^j). \end{aligned}$$
(6.5)

For the first term of (6.5), since \(f_s^i \rightrightarrows f^i\) on K, then by mean value theorem, we have

$$\begin{aligned}&\left| \sum _{i, j, A} \int _K (h_{ij} (f_s)- h_{ij} (f)) e_A f^i \, e_A f^j \right| \\&\le \sum _{i, j, k, A} \max _{B_D} \left| \frac{\partial h_{ij}}{\partial z^k} \right| \int _K |f_s^k - f^k| \, |e_A f^i| \, |e_A f^j| \rightarrow 0, \end{aligned}$$

as \(s \rightarrow \infty \), which implies that

$$\begin{aligned} \lim _{s\rightarrow \infty } \sum _{i, j, A} \int _K h_{ij} (f_s) e_A f^i \, e_A f^j = \sum _{i, j, A} \int _K h_{ij} (f) e_A f^i \, e_A f^j. \end{aligned}$$
(6.6)

Similarly, since \( e_A f^j_s \) and \( e_A f^j \) are uniformly bounded in \( L^2 (K) \), then

$$\begin{aligned} \lim _{s \rightarrow \infty } \sum _{i, j, A} \int _K (h_{ij} (f_s) - h_{ij} (f)) e_A f^i \, e_A (f^j_s - f^j) = 0. \end{aligned}$$
(6.7)

For the third term of (6.5), define an operator \( T_A : S^2_1 (M) \rightarrow L^2 (K) \) by

$$\begin{aligned} T_A (u) = e_A u \big |_K. \end{aligned}$$

\(T_A\) is continuous due to the following calculation:

$$\begin{aligned} || T_A (u) ||_{L^2 (K)}^2 = \int _K | e_A u |^2 \le \int _M | \nabla _b u |^2 \le || u ||_{S^2_1(M)}^2. \end{aligned}$$

Since any continuous operator between two Banach spaces preserves weak convergence, then \( e_A f^i_s \rightharpoonup e_A f^i \) weakly in \( L^2 (K) \) for any A and i. Hence

$$\begin{aligned} \lim _{s \rightarrow \infty } \sum _{i, j, A} \int _K h_{ij} (f) e_A f^i \, e_A (f^j_s- f^j) = 0 . \end{aligned}$$
(6.8)

Using (6.6), (6.7) and (6.8), we find that

$$\begin{aligned} \sum _{i, j, A} \int _K h_{ij} (f) e_A f^i \, e_A f^j \le \liminf _{s \rightarrow \infty } \sum _{i, j, A} \int _K h_{ij} (f_s) e_A f^i_s \, e_A f^j_s, \end{aligned}$$

which implies that

$$\begin{aligned} \sum _{i, j, A} \int _\Omega h_{ij} (f) e_A f^i \, e_A f^j&\le \sum _{i, j, A} \int _K h_{ij} (f) e_A f^i \, e_A f^j + \varepsilon \\&\le \liminf _{s \rightarrow \infty } \sum _{i, j, A} \int _K h_{ij} (f_s) e_A f^i_s \, e_A f^j_s + \varepsilon \\&\le \liminf _{s \rightarrow \infty } \sum _{i, j, A} \int _\Omega h_{ij} (f_s) e_A f^i_s \, e_A f^j_s + \varepsilon . \end{aligned}$$

By taking \(\varepsilon \rightarrow 0\), we obtain (6.4) and thus \(E_H (f) \le \lambda \).

Obviously, \( E_H (f) \ge \lambda \) and then \( E_H (f) = \lambda \) which shows that f has the minimal horizontal energy in \( {\mathcal {S}} \) and satisfies

$$\begin{aligned} \Delta _b f^i + \Gamma ^i_{jk} (f) \langle \nabla _b f^j, \nabla _b f^k \rangle = 0 , \end{aligned}$$

in the distribution sense. By applying Theorem 2 in [15] to f on each coordinate neighborhood \( \Omega \Subset M \), we obtain the interior continuity of f. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, T., Dong, Y., Ren, Y. et al. Pseudo-harmonic Maps from Complete Noncompact Pseudo-Hermitian Manifolds to Regular Balls. J Geom Anal 30, 3512–3541 (2020). https://doi.org/10.1007/s12220-019-00206-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00206-2

Keywords

Mathematics Subject Classification

Navigation