Skip to main content
Log in

Further Results on the Fractional Yamabe Problem: The Umbilic Case

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove some existence results for the fractional Yamabe problem in the case that the boundary manifold is umbilic, thus covering some of the cases not considered by González and Qing. These are inspired by the work of Coda-Marques on the boundary Yamabe problem but, in addition, a careful understanding of the behavior at infinity for asymptotically hyperbolic metrics is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the superintendent of Documents, U.S. Government Printing Office, Washington, D.C., (1964)

  2. Brendle, S.: A generalization of the Yamabe flow for manifolds with boundary. Asian J. Math. 6(4), 625–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Case, J., Chang, S.-Y.A.: On fractional GJMS operators. Comm. Pure Appl. Math. 69(6), 1017–1061 (2016).

  5. Chang, S.-Y.A., González, MdM: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. of Math. 136(1), 1–50 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, Y., González, M.: Asymptotic behavior of Palais-Smale sequences associated with fractional Yamabe type equations. Preprint

  8. Fefferman, C., Graham, C.R.: The Ambient Metric, Annals of Mathematics Studies 178. Princeton University Press, Princeton (2012)

    Google Scholar 

  9. Gonzalez, MdM, Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. Anal. PDE 6(7), 1535–1576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Graham, C.R.: Volume and area renormalizations for conformally compact Einstein metrics. In: The Proceedings of the 19th Winter School “Geometry and Physics” (Srn, 1999). Rend. Circ. Mat. Palermo (2) Suppl. 63, 31–42 (2000)

  11. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 98–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, Z.-C., Li, Y.: The Yamabe problem on manifolds with boundary: existence and compactness results. Duke Math. J. 99(3), 489–542 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, T.L., Xiong, J.G.: Sharp constants in weighted trace inequalities on Riemannian manifolds. Calc. Var. PDE 48, 555–585 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marques, F.C.: Existence results for the Yamabe problem on manifolds with boundary. Indiana Univ. Math. J. 54(6), 1599–1620 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazzeo, R., Melrose, R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decompositions, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50, 799–829 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Palatucci, G., Pisante, A.: A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces. Nonlinear Anal. Theory Methods Appl. 117, 1–7 (2015)

  19. Schoen, R., Yau, S.-T.: Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA (1994)

  20. Watson, G.: A treatise on the theory of Bessel functions. Reprint of the second (1944) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995)

Download references

Acknowledgements

M.d.M. González is supported by Spain Government project MTM2011-27739-C04-01, grant MTM2014-52402-C3-1-P, GenCat 2009SGR345 and the BBVA Foundation grant for Investigadores y Creadores culturales 2016. M. Wang is supported by NSFC 11371316. Both authors would like to acknowledge the hospitality of Princeton University where this work was initiated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Wang.

Appendix

Appendix

Lemma 5.1

The Fourier transform of the function

$$\begin{aligned} w(x)=\left( \frac{1}{1+|x|^2}\right) ^{\frac{n-2\gamma }{2}}, \quad x\in {\mathbb {R}}^n, \end{aligned}$$

is given by

$$\begin{aligned} {\hat{w}}(\zeta )=C_0 |\zeta |^{-\gamma }K_\gamma (|\zeta |), \end{aligned}$$

for some constant \(C_0=C_0(n,\gamma )\), and \(K_\gamma \) the modified Bessel function from Lemma 3.1.

Proof

In the following, all the equalities will be so up to multiplicative constant that may change from line to line. Since w is a radial function, its Fourier transform will be radial too, and we can choose coordinate axes such that \(\zeta =|\zeta |e_1\). Then, expanding in spherical coordinates,

$$\begin{aligned} \hat{w}(\zeta )=\int _{\mathbb R^n} e^{-i x\cdot \zeta }w(x)\,dx =\int _0^\infty \int _0^\pi e^{-i|\zeta |\cos \theta _1}(1+r^2)^{-\mu }r^{n-1}\sin ^{n-2}\theta _1\, d\theta _1\,dr. \end{aligned}$$

It is well known ([20, page 48]) that

$$\begin{aligned} J_{\frac{n}{2}-1}(ar)=(ar)^{\frac{n}{2}-1} \int _0^\pi e^{ia r\cos \theta }\sin ^{n-2}\theta \,d\theta , \end{aligned}$$

and this function is real. Thus

$$\begin{aligned} {\hat{w}}(\zeta )=|\zeta |^{-\frac{n}{2}+1}\int _0^\infty r^{\frac{n}{2}} J_{\frac{n}{2}-1}(|\zeta |r)(1+r^2)^{-\mu }\mathrm{d}r. \end{aligned}$$

Finally, we recall (11.4.44 in [1]) that

$$\begin{aligned} \int _0^\infty \frac{r^{\nu +1} J_\nu (ar)}{(1+r^2)^\mu }\,\mathrm{d}r=a^{\mu -1} K_{\nu -\mu +1}(a), \end{aligned}$$

so

$$\begin{aligned} {\hat{w}}(\zeta )=|\zeta |^{-\frac{n}{2}+\mu }K_{\frac{n}{2}-\mu }(|\zeta |), \end{aligned}$$

as desired. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, M.d.M., Wang, M. Further Results on the Fractional Yamabe Problem: The Umbilic Case. J Geom Anal 28, 22–60 (2018). https://doi.org/10.1007/s12220-017-9794-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9794-3

Keywords

Mathematics Subject Classification

Navigation