Skip to main content
Log in

Vibration Induced Reciprocating Sliding Contacts between Nanoscale Multi-Asperity Tips and a Textured Surface

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Microgravity and vacuum are two main environments in outer space. In the microgravity environment, vibration is a typical phenomenon, and it will induce a reciprocating sliding contact between a journal and a bearing in a clearance joint. In vacuum environment, the adhesion effects are severe, and the friction forces are much higher than the ground environment. Nanoscale textures can reduce the contact area and trap the wear particles, which are beneficial to the friction reduction. Most of the current studies focus on the single-pass sliding contact. Actually, considering the roughness of the contact surfaces, a multi-asperity tip should be more reasonable. In this paper, vibration induced reciprocating sliding contacts between nanoscale multi-asperity tips and a textured surface are investigated using a multiscale method, and the material is FCC copper. Six rigid tips are modelled with different cylindrical asperities and slid on the textured surface. Corresponding to the tips, the average friction forces are compared, and the effects of the tip radii are analyzed. The total average friction forces of the textured surface are compared with the case of a smooth surface, and the mechanism of the friction reduction is discussed. The results showed that the total average friction forces decrease as the increase of the asperity radii, and the textured surface can reduce friction forces effectively compared with the smooth surface. This work could contribute to reducing friction by designing the tip and the textured surface in vibration induced reciprocating sliding contacts under microgravity, which will be beneficial to prolong the life of components on the spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, P.M., Rice, B.M., Thompson, D.L.: Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf. Sci. 515(1), 21–35 (2002)

    Google Scholar 

  • Brizuela, M., García-Luis, A., Oñate, J.I., Garmendia, I.: Tribolab: an experiment on space tribology. In-orbit data at the ISS. 13th European space mechanisms and tribology symposium-ESMATS 2009 Vienna, Austria, September 23–25, (2009)

  • Chen, S.C., Qian, G.C., Yang, L.: Precise control of surface texture on carbon film by ion etching through filter: optimization of texture size for improving tribological behavior. Surf. Coat. Tech. 362, 105–112 (2019)

    Google Scholar 

  • Chouquet, C., Gavillet, J., Ducros, C., Sanchette, F.: Effect of DLC surface texturing on friction and wear during lubricated sliding. Mater. Chem. Phys. 123(2–3), 367–371 (2010)

    Google Scholar 

  • Deng, J., Song, W., Zhang, H., Yan, P., Liu, A.H.: Friction and wear behaviors of the carbide tools embedded with solid lubricants in sliding wear tests and in dry cutting processes. Wear. 270(9–10), 666–674 (2011)

    Google Scholar 

  • Doll, J.D., Mcdowell, H.K.: Theoretical studies of surface diffusion: self-diffusion in the FCC (111) system. J. Chem. Phys. 77(1), 479–483 (1982)

    Google Scholar 

  • Dong, Y.L., Li, Q.Y., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A. 31(3), 030801 (2013)

    Google Scholar 

  • Etsion, I.: State of the art in laser surface texturing. ASME J Tribol. 127(1), 248–253 (2005)

    Google Scholar 

  • Fleming, R.A., Zou, M.: Nanostructure-textured surfaces with low friction and high deformation resistance. Tribol. Trans. 61(1), 80–87 (2018)

    Google Scholar 

  • Gaponenko, Y., Shevtsova, V.: Shape of diffusive interface under periodic excitations at different gravity levels. Microgravity Sci. Technol. 28(4), 431–439 (2016)

    Google Scholar 

  • Garrido, A.H., González, R., Cadenas, M., Battez, A.H.: Trigological behavior of laser-textured NiCrBSi coatings. Wear. 271(5–6), 925–933 (2011)

    Google Scholar 

  • Harrison, J.A., Colton, R.J., White, C.T., Brenner, D.W.: Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear. 168(1–2), 127–133 (1993)

    Google Scholar 

  • He, B., Chen, W., Wang, Q.J.: Surface texture effect on friction of a microtextured poly(dimethylsiloxane) (PDMS). Tribol. Lett. 31, 187–197 (2008)

    Google Scholar 

  • Johnson, M.R.: The Galileo high gain antenna deployment anomaly. Proc. 28th Aerospace Mechanism Symp. (Cleveland, OH) NASA Conference Publication 3260, (1994)

  • Karpunin, I.E., Kozlova, A.N., Kozlov, N.V.: Behavior of a light solid in a rotating horizontal cylinder with liquid under vibration. Microgravity Sci. Technol. 30(3–4), 399–409 (2018)

    Google Scholar 

  • Kim, H.-J., Kim, D.-E.: Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces. Nanoscale. 4(13), 3937–3944 (2012)

    Google Scholar 

  • Krick, B.A., Sawyer, W.G.: Space tribometers: design for exposed experiments on orbit. Tribol. Lett. 41(1), 303–311 (2011)

    Google Scholar 

  • Krick, B.A., Muratore, C., Burris, D.L., Carpick, R.W., Prasad, S.V., Korenyi-Both, A., Voevodin, A.A., Jones, J.G., Sawyer, W.G.: Space Tribology: Experiments in Low Earth Orbit. World Tribology Congress 2013 Torino, Italy, September 8–13, (2013)

  • Li, J., Fang, Q.H., Zhang, L.C., Liu, Y.W.: The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation. Comput. Mater. Sci. 98, 252–262 (2015)

    Google Scholar 

  • Lu, L.B., Zhang, Z., Guan, Y.C., Zheng, H.Y.: Comparison of the effect of typical patterns on friction and wear properties of chromium alloy prepared by laser surface texturing. Opt. Laser Technol. 106, 272–279 (2018)

    Google Scholar 

  • Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Mark, O.R.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E. 74(4), 046710 (2006)

    Google Scholar 

  • Menezes, P.L., Kishore, Kailas, S.V., Lovell, M.R.: The role of surface texture on friction and transfer layer formation during repeated sliding of Al-4Mg against steel. Wear. 271(9–10), 1785–1793 (2011)

    Google Scholar 

  • Mitchell, N., Eljach, C., Lodge, B., Sharp, J.L., DesJardins, J.D., Kennedy, M.S.: Single and reciprocal friction testing of micropatterned surfaces for orthopedic device design. J. Mech. Behav. Biomed. Mater. 7(1), 106–115 (2012)

    Google Scholar 

  • Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature. 457(7233), 1116–1119 (2009)

    Google Scholar 

  • Moore, D.F.: Principles and Applications of Tribology. Pergamon Press, Oxford (1975)

    Google Scholar 

  • Pettersson, U., Jacobson, S.: Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors. Tribol. Int. 40(2), 355–359 (2007)

    Google Scholar 

  • Pimenov, S.M., Jaeggi, B., Neuenschwander, B., Zavedeev, E.V., Zilova, O.S., Shupegin, M.L.: Femtosecond laser surface texturing of diamond-like nanocomposite films to improve tribological properties in lubricated sliding. Diam. Relat. Mater. 93, 42–49 (2019)

    Google Scholar 

  • Pimenova, A.V., Goldobin, D.S., Lyubimova, T.P.: Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Sci. Technol. 30(1–2), 1–10 (2018)

    Google Scholar 

  • Qi, Y., Cheng, Y.-T., Çağin, T., Goddard III, W.A.: Friction anisotropy at Ni(100)/(100) interfaces: molecular dynamics studies. Phys. Rev. B. 66(8), 085420(1–085420(7 (2002)

    Google Scholar 

  • Roberts, E.W.: Space tribology: its role in spacecraft mechanisms. J. Phys. D. Appl. Phys. 45, 503001 (2012)

    Google Scholar 

  • Saadatmand, M., Kawaji, M., Hu, H.H.: Vibration-induced attraction of a particle towards a wall in microgravity-the mechanism of attraction force. Microgravity Sci. Technol. 24(1), 53–64 (2012)

    Google Scholar 

  • Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)

    Google Scholar 

  • Tong, R.T., Liu, G.: Nanoscale reciprocating sliding contacts of textured surfaces: influence of structure parameters and indentation depth. Chin J Mech Eng. 31, 62 (2018)

    Google Scholar 

  • Tong, R.T., Liu, G.: Friction property of impact sliding contact under vacuum and microgravity. Microgravity Sci. Tec. 31(1), 85–94 (2019)

    Google Scholar 

  • Tong, R.T., Liu, G., Liu, T.X.: Multiscale analysis on two dimensional nanoscale sliding contacts of textured surfaces. ASME J Tribol. 133(4), 041401(1-13) (2011)

    Google Scholar 

  • Tong, R.T., Liu, G., Liu, T.X.: Friction characteristics of nanoscale sliding contacts between multi-asperity tips and textured surfaces. Chin J Mech Eng. 26(6), 1109–1117 (2013)

    Google Scholar 

  • Tong, R.T., Liu, G., Liu, T.X.: Two dimensional nanoscale reciprocating sliding contacts of textured surfaces. Chin J Mech Eng. 29(3), 531–538 (2016)

    Google Scholar 

  • Tong, R.T., Han, B., Quan, Z.F., Liu, G.: Molecular dynamics simulation of friction and heat properties of nano-texture gold film in space environment. Surf Coat Tech. 358, 775–784 (2019a)

    Google Scholar 

  • Tong, R.T., Quan, Z.F., Han, B., Liu, G.: Coarse-grained molecular dynamics simulation on friction behaviors of textured ag-coating under vacuum and microgravity environments. Surf Coat Tech. 359, 265–271 (2019b)

    Google Scholar 

  • Voter, A.F., Doll, J.D.: Transition state theory description of surface self-diffusion: comparison with classical trajectory results. J. Chem. Phys. 80(11), 5832–5838 (1984)

    Google Scholar 

  • Wang, Z.L., Gabriel, K.S.: The influence of film structure on the interfacial friction in annular two-phase flow under microgravity and normal gravity conditions. Microgravity Sci. Technol. 16(1–4), 264–268 (2005)

    Google Scholar 

  • Yang, L., Zhang, Q., Diao, D.F.: Cross-linking-induced frictional behavior of multilayer graphene: origin of friction. Tribol. Lett. 62, 33 (2016)

    Google Scholar 

  • Yu, C.J., Wang, Q.J.: Friction anisotropy with respect to topographic orientation. Sci. Rep. 2, 988), 1–988), 6 (2012)

    Google Scholar 

  • Yu, C.J., Yu, H.L., Liu, G., Chen, W., He, B., Wang, Q.J.: Understanding topographic dependence of friction with micro- and nano-grooved surfaces. Tribol. Lett. 53(1), 145–156 (2014)

    Google Scholar 

  • Zhang, Q., Qi, Y., Hector Jr., L.G., Çağın, T., Goddard III, W.A.: Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α-Al2O3/α-Al2O3 interfaces. Phys. Rev. B. 72(4), 045406(1-12) (2005)

    Google Scholar 

  • Zhang, Y.K., Dong, W.B., Liu, W., Li, Z.F., Lv, S.M., Sang, X.R., Yang, Y.: Verification of the microgravity active vibration isolation system based on parabolic flight. Microgravity Sci. Technol. 29(6), 415–426 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (51675429), Key Project of National Natural Science Foundation of China (51535009), the Fundamental Research Funds for the Central Universities (31020190503004) and the 111 Project (B13044) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiting Tong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, R., Liu, G. Vibration Induced Reciprocating Sliding Contacts between Nanoscale Multi-Asperity Tips and a Textured Surface. Microgravity Sci. Technol. 32, 79–88 (2020). https://doi.org/10.1007/s12217-019-09745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09745-3

Keywords

Navigation