Skip to main content
Log in

Modelling of Unidirectional Reciprocating Sliding Contacts of Nanoscale Textured Surfaces Considering the Impact Effects in Microgravity Environment

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In space environment, the adhesion effects can cause a high adhesion component of a friction force, and the impact effects caused by the microgravity can induce a high ploughing component, so the friction force is higher than the ground environment. Nanoscale textures affect the adhesion behaviors by reducing contact areas, and they also vary the shear strength of the interface, which are beneficial to the friction reduction. Considering the impact effects, the motion of a clearance joint is simplified as a unidirectional reciprocating sliding contact, and a multiscale model is employed to investigate the friction and wear characteristics between a rigid cylindrical tip and nanoscale textured surfaces. The effects of texture shapes on running-in stages, average friction forces and wear characteristics are investigated. The results show that the isosceles trapezoid textured surface (surface II) and the surface with right-angled trapezoid textures on the right side (surface III) can come to steady states for different sliding modes. Surface II presents the lowest total average friction force to show its potential to reduce friction forces. The worn atoms are the least for surface III, and surface III can be used to improve the wear behaviors. The impact effects make that the unidirectional reciprocating sliding contacts show higher total average friction forces than reciprocating sliding contacts. This work could contribute to designing textured surfaces, reducing friction and wear in unidirectional reciprocating sliding contacts under impact effects in microgravity environment, and help to prolong the life of components in the spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal, P.M., Rice, B.M., Thompson, D.L.: Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf. Sci. 515(1), 21–35 (2002)

    Article  Google Scholar 

  • Bai, L.C., Srikanth, N., Korznikova, E.A., Baimova, J.A., Dmitriev, S.V., Zhou, K.: Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear. 372–373, 12–20 (2017)

    Article  Google Scholar 

  • Bhushan, B., Sundararajan, S.: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater. 46(11), 3793–3804 (1998)

    Article  Google Scholar 

  • Chen, S.C., Qian, G.C., Yang, L.: Precise control of surface texture on carbon film by ion etching through filter: optimization of texture size for improving tribological behavior. Surf. Coat. Tech. 362, 105–112 (2019)

    Article  Google Scholar 

  • Cheng, Y., Zhu, P., Li, R.: The influence of vertical vibration on nanoscale friction: a molecular dynamics simulation study. Crystals. 8(3), 129 (2018)

    Article  Google Scholar 

  • Cho, D.-H., Jung, J., Kim, C., Lee, J., Oh, S.-D., Kim, K.-S., Lee, C.: Comparison of frictional properties of CVD-grown MoS2 and graphene films under dry sliding conditions. Nanomaterials. 9(2), 293 (2019)

    Article  Google Scholar 

  • Christian, J., Gwénael, R.: Molecule concept nanocars: chassis, wheel, and motors? ACS Nano. 7(1), 11–14 (2013)

    Article  Google Scholar 

  • Craciun, A.D., Gallani, J.L., Rastei, M.V.: Stochastic stick-slip nanoscale friction on oxide surfaces. Nanotechnology. 27(5), 055402 (2016)

    Article  Google Scholar 

  • Dai, H.F., Chen, G.Y., Li, S.B., Fang, Q.H., Hu, B.: Influence of laser nanostructured diamond tools on the cutting behavior of silicon by molecular dynamics simulation. RSC Adv. 7, 15596–15612 (2017)

    Article  Google Scholar 

  • Doll, J.D., Mcdowell, H.K.: Theoretical studies of surface diffusion: self-diffusion in the FCC (111) system. J. Chem. Phys. 77(1), 479–483 (1982)

    Article  Google Scholar 

  • Dong, Y.L., Li, Q.Y., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A. 31(3), 030801 (2013)

    Article  Google Scholar 

  • Erkaya, S.: Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network. J. Mech. Sci. Technol. 26(5), 1419–1430 (2012)

    Article  Google Scholar 

  • Etsion, I.: State of the art in laser surface texturing. ASME J. Tribol. 127(1), 248–253 (2005)

    Article  Google Scholar 

  • Foster, C.L., Tinker, M.L., Nurre, G.S., Till, W.A.: The solar array-induced disturbance of the Hubble space telescope pointing system. NASA Technical Paper 3556 (1995)

  • Gao, H., Dong, Y., Martini, A.: Atomistic study of lateral contact stiffness in friction force microscopy. Tribol. Int. 74, 57–61 (2014)

    Article  Google Scholar 

  • Gnecco, E., Bennewitz, R., Socoliuc, A., Meyer, E.: Friction and wear on the atomic scale. Wear. 254(9), 859–862 (2003)

    Article  Google Scholar 

  • Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B. 46(15), 9700–9708 (1992)

    Article  Google Scholar 

  • Jeon, S., Thundat, T., Braiman, Y.: Effect of normal vibration on friction in the atomic force microscopy experiment. Appl. Phys. Lett. 88(21), 5038 (2006)

    Article  Google Scholar 

  • Karpunin, I.E., Kozlova, A.N., Kozlov, N.V.: Behavior of a light solid in a rotating horizontal cylinder with liquid under vibration. Microgravity Sci. Technol. 30(4), 399–409 (2018)

    Article  Google Scholar 

  • Kim, H.-J., Kim, D.-E.: Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces. Nanoscale. 4(13), 3937–3944 (2012)

    Article  Google Scholar 

  • Kumar, A., Staedler, T., Jiang, X.: Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime. Beilstein J. Nanotechnol. 4, 66–71 (2013)

    Article  Google Scholar 

  • Li, J., Fang, Q.H., Zhang, L.C., Liu, Y.W.: The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation. Comput. Mater. Sci. 98, 252–262 (2015)

    Article  Google Scholar 

  • Liu, X.Z., Ye, Z.J., Dong, Y.L., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114(14), 146102 (2015)

    Article  Google Scholar 

  • Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Mark, O.R.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E. 74(4), 046710 (2006)

    Article  Google Scholar 

  • Ma, M., Sokolov, I.M., Wang, W., Filippov, A.E., Zheng, Q., Urbakh, M.: Diffusion through bifurcations in oscillating nano- and microscale contacts: fundamentals and applications. Phys. Rev. X. 5(3), 031020 (2015)

    Google Scholar 

  • Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rew. Lett. 59(17), 1942–1945 (1987)

    Article  Google Scholar 

  • Meng, F.M., Zhou, R., Davis, T., Cao, J., Wang, Q.J., Hua, D., Liu, J.: Study on effect of dimples on friction of parallel surfaces under different sliding conditions. Appl. Sur. Sci. 256(9), 2863–2875 (2010)

    Article  Google Scholar 

  • Mitchell, N., Eljach, C., Lodge, B., Sharp, J.L., DesJardins, J.D., Kennedy, M.S.: Single and reciprocal friction testing of micropatterned surfaces for orthopedic device design. J. Mech. Behav. Biomed. Mater. 7, 106–115 (2012)

    Article  Google Scholar 

  • Moore, D.F.: Principles and applications of tribology. Pergamon Press, Oxford (1975)

    Google Scholar 

  • Perry, M.D., Harrison, J.A.: Friction between diamond surfaces in the presence of small third-body molecules. J. Phys. Chem. B. 101(8), 1364–1373 (1997)

    Article  Google Scholar 

  • Pimenova, A.V., Goldobin, D.S., Lyubimova, T.P.: Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Sci. Technol. 30(1–2), 1–10 (2018)

    Article  Google Scholar 

  • Quignon, B., Pilkington, G.A., Thormann, E., Claesson, P.M., Ashfold, M.N.R., Mattia, D., Leese, H., Davis, S.A., Briscoe, W.H.: Sustained frictional instabilities on nanodomed surfaces: stick-slip amplitude coefficient. ACS Nano. 7(12), 10850–10862 (2013)

    Article  Google Scholar 

  • Schipitsyn, V.D., Kozlov, V.G.: Oscillatory and steady dynamics of a cylindrical body near the border of vibrating cavity filled with liquid. Microgravity Sci. Technol. 30(1–2), 103–1112 (2018)

    Article  Google Scholar 

  • Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science. 313(5784), 207–210 (2006)

    Article  Google Scholar 

  • Sun, X.Y., Qi, Y.Z., Ouyang, W., Feng, X.Q., Li, Q.Y.: Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations. Acta Mech. Sinica. 32(4), 604–610 (2016)

    Article  MATH  Google Scholar 

  • Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)

    Article  Google Scholar 

  • Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology. 16(10), 2309–2324 (2005)

    Article  Google Scholar 

  • Tong, R.T., Liu, G.: Nanoscale reciprocating sliding contacts of textured surfaces: influence of structure parameters and indentation depth. Chin. J. Mech. Eng. 31, 62 (2018)

    Article  Google Scholar 

  • Tong, R.T., Liu, G.: Friction property of impact sliding contact under vacuum and microgravity. Microgravity Sci. Technol. 31(1), 85–94 (2019)

    Article  Google Scholar 

  • Tong, R.T., Liu, G., Liu, T.X.: Multiscale analysis on two dimensional nanoscale sliding contacts of textured surfaces. ASME J. Tribol., 133. (4), 041401(1–13)), (2011)

  • Tong, R.T., Han, B., Quan, Z.F., Liu, G.: Molecular dynamics simulation of friction and heat properties of nano-texture gold film in space environment. Surf. Coat. Tech. 358, 775–784 (2019)

    Article  Google Scholar 

  • Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102(13), 136102 (2009)

    Article  Google Scholar 

  • Wang, W.H., Peng, Q., Dai, Y.Q., Qian, Z.F., Liu, S.: Distinctive nanofriction of graphene coated copper foil. Comput. Mater. Sci. 117, 406–411 (2016)

    Article  Google Scholar 

  • Wyder, U., Baratoff, A., Meyer, E.: Interpretation of atomic friction experiments based on atomistic simulations. J. Vac. Sci. Technol. B. 25(5), 1547–1553 (2007)

    Article  Google Scholar 

  • Xing, Y.Q., Deng, J.X., Li, S.P., Yue, H.Z., Meng, R., Gao, P.: Cutting performance and wear characteristics of Al2O3/TiC ceramic cutting tools with WS2/Zr soft-coatings and nano-textures in dry cutting. Wear. 318(1–2), 12–26 (2014)

    Article  Google Scholar 

  • Yang, J., Komvopoulos, K.: A molecular dynamics analysis of surface interference and tip shape and size effects on atomic-scale friction. ASME J. Tribol. 127(3), 513–521 (2005)

    Article  Google Scholar 

  • Yang, P., Zhang, H.Z.: Numerical analysis on meshing friction characteristics of nano-gear train. Tribol. Int. 41(6), 535–541 (2008)

    Article  Google Scholar 

  • Yang, L., Guo, Y.J., Zhang, Q.: Frictional behavior of strained multilayer graphene: tuning the atomic scale contact area. Diam. Relat. Mater. 73, 273–277 (2017)

    Article  Google Scholar 

  • Yoon, H.M., Jung, Y.M., Jun, S.C., Kondaraju, S., Lee, J.S.: Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion. Nanoscale. 7(14), 6295–6303 (2015)

    Article  Google Scholar 

  • Zhang, H.S., Komvopoulos, K.: Scale-dependent nanomechanical behavior and anisotropic friction of nanotextured silicon surfaces. J. Mater. Res. 24(10), 3038–3043 (2009)

    Article  Google Scholar 

  • Zhang, L.C., Johnson, K.L., Cheong, W.C.D.: A molecular dynamics study of scale effects on the friction of single-asperity contacts. Tribol. Lett. 10(1–2), 23–28 (2001)

    Article  Google Scholar 

  • Zhang, Y.K., Dong, W.B., Liu, W., Li, Z.F., Lv, S.M., Sang, X.R., Yang, Y.: Verification of the microgravity active vibration isolation system based on parabolic flight. Microgravity Sci. Technol. 29(6), 415–426 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (51675429), Key Project of National Natural Science Foundation of China (51535009), China Scholarship Council (No. 201706295034), the Fundamental Research Funds for the Central Universities (31020190503004), and the 111 Project (B13044) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiting Tong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, R., Liu, G. Modelling of Unidirectional Reciprocating Sliding Contacts of Nanoscale Textured Surfaces Considering the Impact Effects in Microgravity Environment. Microgravity Sci. Technol. 32, 155–166 (2020). https://doi.org/10.1007/s12217-019-09753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09753-3

Keywords

Navigation