Skip to main content
Log in

An inertial method for solving split equality quasimonotone Minty variational inequality problems in reflexive Banach spaces

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In this paper, we introduce the split equality Minty variational inequality problem in reflexive real Banach spaces. Then we construct a single projection inertial algorithm for solving the introduced problem. We establish a strong convergence result with the assumption that the mappings under consideration are Lipschitz continuous and quasimonotone. We give some specific applications of the main result and finally provide a numerical example to demonstrate the workability of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Topological Fixed Point Theory and Its Applications, vol. 6. Springer, New York (2009)

    Google Scholar 

  2. Alakoyo, T.O., Mewomo, O.T., Shehu, Y.: Strong convergence results for quasimonotone variational inequalities. Math. Methods Oper. Res. 95(2), 249–279 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4(1), 27–67 (1997)

    MathSciNet  Google Scholar 

  4. Belay, Y.A., Zegeye, H., Boikanyo, O.A.: An inertial method for split equality common f, g-fixed point problems of f, g-pseudocontractive mappings in reflexive real Banach spaces. J. Anal. 31(2), 963–1000 (2023)

    Article  MathSciNet  Google Scholar 

  5. Belay, Y.A., Zegeye, H., Boikanyo, O.A.: Solutions of split equality Hammerstein type equation problems in reflexive real Banach spaces. Carpathian J. Math. 39(1), 45–72 (2023)

    Article  MathSciNet  Google Scholar 

  6. Belay, Y.A., Zegeye, H., Boikanyo, O.A.: Approximation methods for solving split equality of variational inequality and f, g- fixed point problems in reflexive Banach spaces. Nonlinear Funct. Anal. Appl. 135–173 (2023)

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2013)

    Google Scholar 

  8. Boikanyo, O.A., Zegeye, H.: Split equality variational inequality problems for pseudomonotone mappings in Banach spaces. Stud. Univ. Babes-Bolyai Math. 66(1), 139–158 (2021)

    Article  MathSciNet  Google Scholar 

  9. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal 2006, 39 (2006)

    Article  MathSciNet  Google Scholar 

  10. Butnariu, D., Reich, S., Zaslavski, A.J.: There are many totally convex functions. J. Convex Anal. 13(3–4), 623 (2006)

    MathSciNet  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  Google Scholar 

  13. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  14. Cholamjiak, P., Shehu, Y.: Inertial forward-backward splitting method in Banach spaces with application to compressed sensing. Appl. Math. 64(4), 409–435 (2019)

    Article  MathSciNet  Google Scholar 

  15. Cholamjiak, W., Kitisak, P., Yambangwai, D.: An inertial parallel CQ subgradient extragradient method for variational inequalities application to signal-image recovery. Results Nonlinear Anal. 4(4), 217–234 (2021)

    Article  Google Scholar 

  16. Cholamjiak, W., Dutta, H., Yambangwai, D.: Image restorations using an inertial parallel hybrid algorithm with Armijo linesearch for nonmonotone equilibrium problems. Chaos Solitons Fractals 153, 111462 (2021)

    Article  MathSciNet  Google Scholar 

  17. Cholamjiak, W., Suparatulatorn, R.: Strong convergence of a modified extragradient algorithm to solve pseudomonotone equilibrium and application to classification of diabetes mellitus. Chaos Solitons Fractals 168, 113108 (2023)

    Article  MathSciNet  Google Scholar 

  18. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75(2), 281–295 (1992)

    Article  MathSciNet  Google Scholar 

  19. Dupuis, P., Nagurney, A.: Dynamical systems and variational inequalities. Ann. Oper. Res. 44, 7–42 (1993)

    Article  MathSciNet  Google Scholar 

  20. Facchinei, F., Fransisco, P.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  21. Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat. 34, 138–142 (1963)

    MathSciNet  Google Scholar 

  22. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MathSciNet  Google Scholar 

  23. Izuchukwu, C., Shehu, Y., Yao, J.C.: New inertial forward-backward type for variational inequalities with Quasi-monotonicity. J. Glob. Optim. 84(2), 441–564 (2022)

    Article  MathSciNet  Google Scholar 

  24. Jolaoso, L.O., Shehu, Y.: Single Bregman projection method for solving variational inequalities in reflexive Banach spaces. Appl. Anal. 101(14), 4807–4828 (2022)

    Article  MathSciNet  Google Scholar 

  25. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, New York (2000)

    Book  Google Scholar 

  26. Kwelegano, K.M.T., Zegeye, H., Boiknyo, O.A.: An Iterative method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings. Rend. Circ. Mat. Palermo 71(1), 325–348 (2022)

    Article  MathSciNet  Google Scholar 

  27. Liu, H., Yang, J.: Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput. Optim. Appl. 77(2), 491–508 (2020)

    Article  MathSciNet  Google Scholar 

  28. Malitsky, Y.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25(1), 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  29. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16(7–8), 899–912 (2008)

    Article  MathSciNet  Google Scholar 

  30. Martín-Márquez, V., Reich, S., Sabach, S.: Right Bregman nonexpansive operators in Banach spaces. Nonlinear Anal. 75(14), 5448–5465 (2012)

    Article  MathSciNet  Google Scholar 

  31. Moudafi, A.: A relaxed alternating CQ algorithm for convex feasibility problems. Nonlinear Anal. 79, 117–121 (2013)

    Article  MathSciNet  Google Scholar 

  32. Nagurney, A.: Network Economics: A Variational Inequality Approach. Kluwer Academic Publishers, Dordrechit (1998)

    Google Scholar 

  33. Naraghirad, E., Yao, J.C.: Bregman weak relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2013(1), 1–43 (2013)

    Article  MathSciNet  Google Scholar 

  34. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Boston (2013)

    Google Scholar 

  35. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32, 44–58 (1979)

    Article  MathSciNet  Google Scholar 

  36. Pappalardo, M., Passacantando, M.: Stability for equilibrium problems: from variational inequalities to dynamical systems. J.O.T.A. 113, 567–582 (2002)

    Article  MathSciNet  Google Scholar 

  37. Pathak, H.K.: An Introduction to Nonlinear Analysis and Fixed Point Theory. Springer, Singapore (2018)

    Book  Google Scholar 

  38. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (2009)

    Google Scholar 

  39. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  40. Reem, D., Reich, S., De Piero, A.: Re-examination of Bregman functions and new properties of their divergences. Optimization 68(1), 279–348 (2019)

    Article  MathSciNet  Google Scholar 

  41. Reich, S.: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44(1), 57–70 (1973)

    Article  MathSciNet  Google Scholar 

  42. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67(2), 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  43. Reich, S.: On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. J. Math. Anal. Appl. 79(1), 113–126 (1981)

    Article  MathSciNet  Google Scholar 

  44. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10(3), 471–485 (2009)

    MathSciNet  Google Scholar 

  45. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73(1), 122–135 (2010)

    Article  MathSciNet  Google Scholar 

  46. Reich, S., Sabach, S.: A projection method for solving nonlinear problems in reflexive Banach spaces. J. Fixed Point Theory Appl. 9(1), 101–116 (2011)

    Article  MathSciNet  Google Scholar 

  47. Reich, S., Zaslavski, A.J.: Existence of a unique fixed point for nonlinear contractive mappings. Mathematics 8(1), 55 (2020)

    Article  Google Scholar 

  48. Reich, S., Thong, D.V., Cholamjiak, P., Van Long, L.: Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space. Numer. Algorithms 1–23 (2021)

  49. Reich, S., Tuyen, T.M., Sunthrayuth, P., Cholamjiak, P.: Two new inertial algorithms for solving variational inequalities in reflexive Banach spaces. Numer. Funct. Anal. Optim. 42(16), 1954–1984 (2022)

    Article  MathSciNet  Google Scholar 

  50. Salahuddin: The extragradient method for quasi-monotone variational inequalities. Optimization 71(9), 2519–2528 (2022)

  51. Senakka, P., Cholamjiak, P.: Approximation method for solving fixed point problem of Bregman strongly nonexpansive mappings in reflexive Banach spaces. Ric. Mat. 65(1), 209–220 (2016)

    Article  MathSciNet  Google Scholar 

  52. Sow, T.M.M.: New iterative schemes for solving variational inequality and fixed points problems involving demicontractive and quasi-nonexpansive mappings in Banach spaces. Appl. Math. Nonlinear Sci. 4(2), 559–574 (2019)

    Article  MathSciNet  Google Scholar 

  53. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Hebd. Seances L Acad. Sci. 258(18), 4413 (1964)

    MathSciNet  Google Scholar 

  54. Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Optim. 14(4), 1595–1615 (2018)

    Article  MathSciNet  Google Scholar 

  55. Suantai, S., Pholasa, N., Cholamjiak, P.: Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems. RACSAM Rev Real Acad A 113, 1081–1099 (2019)

    MathSciNet  Google Scholar 

  56. Thong, D.V., Yang, J., Cho, Y.J., Rassias, T.M.: Explicit extragradient-like method with adaptive stepsizes for pseudomonotone variational inequalities. Optim. Lett. 15, 1–19 (2021)

    Article  MathSciNet  Google Scholar 

  57. Wang, K., Wang, Y., Iyiola, O.S., Shehu, Y.: Double inertial projection method for variational inequalities with quasi-monotonicity. Optimization 73, 1–33 (2022)

    MathSciNet  Google Scholar 

  58. Wang, Z.B., Chen, X., Yi, J., Chen, Z.Y.: Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities. J. Glob. Optim. 82, 1–24 (2022)

    Article  MathSciNet  Google Scholar 

  59. Wang, Z., Sunthrayuth, P., Adamu, A., Cholamjiak, P.: Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities. Optimization 1–35 (2023)

  60. Wega, G.B., Zegeye, H.: Convergence results of forward-backward method for a zero of the sum of maximally monotone mappings in Banach spaces. Appl. Comput. Math. 39(3), 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  61. Wega, G.B., Zegeye, H.: Convergence theorems of common solutions of variational inequality and f-fixed point problems in Banach spaces. Appl. Set-Valued Anal. Optim. 3(1), 55–73 (2021)

    Google Scholar 

  62. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(1), 240–256 (2002)

    Article  MathSciNet  Google Scholar 

  63. Ye, M., He, Y.: A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 60, 141–150 (2015)

    Article  MathSciNet  Google Scholar 

  64. Zegeye, H., Shahzad, N.: A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems. Nonlinear Anal. Theory Methods Appl. 74(1), 263–272 (2011)

    Article  MathSciNet  Google Scholar 

  65. Zegeye, H., Shahzad, N., Alghamdi, M.A.: Strong convergence theorems for a common point of solution of variational inequality, solutions of equilibrium and fixed point problems. Fixed Point Theory Appl. 2012, 1–17 (2012)

    Article  MathSciNet  Google Scholar 

  66. Zheng, L.: A double projection algorithm for quasimonotone variational inequalities in Banach spaces. J. Inequal. Appl. 2018(1), 256 (2018)

    Article  MathSciNet  Google Scholar 

  67. Zhong, X.: On the fenchel duality between strong convexity and Lipschitz continuous gradient (2018). arXiv:1803.06573 [math.OC]

Download references

Acknowledgements

The first and second authors gratefully acknowledge the funding received from Simons Foundation based at Botswana International University of Science and Technology (BIUST). The first author is grateful to Aksum University for the financial support provided during his study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habtu Zegeye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belay, Y.A., Zegeye, H., Boikanyo, O.A. et al. An inertial method for solving split equality quasimonotone Minty variational inequality problems in reflexive Banach spaces. Rend. Circ. Mat. Palermo, II. Ser (2024). https://doi.org/10.1007/s12215-024-01025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12215-024-01025-3

Keywords

Mathematics Subject Classification

Navigation