Skip to main content
Log in

A projection method for solving nonlinear problems in reflexive Banach spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We study the convergence of an iterative algorithm for finding common fixed points of finitely many Bregman firmly nonexpansive operators in reflexive Banach spaces. Our algorithm is based on the concept of the so-called shrinking projection method and it takes into account possible computational errors. We establish a strong convergence theorem and then apply it to the solution of convex feasibility and equilibrium problems, and to finding zeroes of two different classes of nonlinear mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Prodi G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  2. Bauschke H.H., Borwein J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke H.H., Borwein J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Bauschke H.H., Borwein J.M., Combettes P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke H.H., Borwein J.M., Combettes P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauschke H.H., Combettes P.L.: Construction of best Bregman approximations in reflexive Banach spaces. Proc. Amer. Math. Soc. 131, 3757–3766 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Bonnans J.F., Shapiro A.: Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  9. Bregman L.M.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. and Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  10. Bruck R.E.: Nonexpansive projections on subsets of Banach spaces. Pacific J. Math. 47, 341–355 (1973)

    MATH  MathSciNet  Google Scholar 

  11. Bruck R.E., Reich S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MATH  MathSciNet  Google Scholar 

  12. Butnariu D., Censor Y., Reich S.: Iterative averaging of entropic projections for solving stochastic convex feasibility problems. Comput. Optim. Appl. 8, 21–39 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Butnariu D., Iusem A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  14. Butnariu D., Kassay G.: A proximal-projection method for finding zeros of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006 (2006), Art. ID 84919, 1–39.

    Google Scholar 

  16. Censor Y., Lent A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Combettes P.L., Hirstoaga S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  19. Kopecká E., Reich S.: Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball. Nonlinear Anal. 70, 3187–3194 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Levenshtein M., Reich S.: Approximating fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Anal. 70, 4145–4150 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Reich S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378–395 (1977)

    Article  MATH  Google Scholar 

  22. Reich S.: A limit theorem for projections. Linear Multilinear Algebra 13, 281–290 (1983)

    Article  MATH  Google Scholar 

  23. S. Reich, A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lect. Notes Pure Appl. Math. 178, Marcel Dekker, New York, 1996, 313–318.

  24. Reich S., Sabach S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)

    MATH  MathSciNet  Google Scholar 

  25. Reich S., Sabach S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Reich and S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, to appear.

  27. Reich S., Sabach S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73, 122–135 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Resmerita E.: On total convexity, Bregman projections and stability in Banach spaces. J. Convex Anal. 11, 1–16 (2004)

    MATH  MathSciNet  Google Scholar 

  29. Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Takahashi W., Takeuchi Y., Kubota R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276–286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, S., Sabach, S. A projection method for solving nonlinear problems in reflexive Banach spaces. J. Fixed Point Theory Appl. 9, 101–116 (2011). https://doi.org/10.1007/s11784-010-0037-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-010-0037-5

Mathematics Subject Classification (2010)

Keywords

Navigation