1 Introdution and results

For integers \(k,\ell \ge 1\) define

$$\begin{aligned} P_{k,\ell } = \frac{(k+\ell )!}{(k-1)!\ell !}\int _{k/(k+\ell )}^1 t^{k-1}(1-t)^\ell \;dt. \end{aligned}$$

By repeated partial integration we obtain the representation

$$\begin{aligned} P_{k, \ell } = \left( \frac{\ell }{\ell +k}\right) ^{k+\ell }\sum _{\nu =0}^{k-1} \left( {\begin{array}{c}k+\ell \\ \nu \end{array}}\right) \left( \frac{k}{\ell }\right) ^\nu . \end{aligned}$$

Vietoris[5] showed that \(P_{k,\ell }\le \frac{1}{2}\). Alzer and Kwong [1] proved that \(P_{k,\ell }\ge \frac{1}{4}\) holds for all \(k, \ell \). Interest in bounds for \(P_{k,\ell }\) stems from application to statistics, see [4].

In this note we consider the asymptotic behaviour of \(P_{k,\ell }\). We prove the following.

Theorem 1

We have

$$\begin{aligned} P_{k, l} = e^{-k}\sum _{\nu =0}^{k-1}\frac{k^\nu }{\nu !} + \mathcal {O}\left( \frac{k^2}{\ell }\right) , \end{aligned}$$
(1)
$$\begin{aligned} P_{k,\ell } = 1-e^{-\ell }\sum _{\nu =0}^{\ell }\frac{\ell ^\nu }{\nu !} + \mathcal {O}\left( \frac{\ell ^2}{k}\right) \end{aligned}$$
(2)

and

$$\begin{aligned} P_{k, \ell } = \frac{1}{2}+\mathcal {O}\left( \frac{1}{\sqrt{\min (k, \ell )}}\right) . \end{aligned}$$
(3)

Note that the first two estimates are good if one of the parameters \(k, \ell \) is rather small, whereas the third one gives information in the general case.

Comparing (1) and (2) with Vietoris’ result that \(P_{k,\ell }\le \frac{1}{2}\) we see that

$$\begin{aligned} \sum _{\nu =0}^{\ell -1}\frac{\ell ^\nu }{\nu !}<\frac{1}{2}e^\ell < \sum _{\nu =0}^{\ell }\frac{\ell ^\nu }{\nu !}. \end{aligned}$$

Note that equality is impossible as e is transcendental. A more precise version of this inequality has been asked by Ramanujan (Question 294) and was answered by Karamata [2]. For a detailed discussion of this result, Uhlmann’s inequalities [4] and Vietoris bound we refer the reader to the historical notes by Vietoris [6].

From Theorem 1 we deduce the following.

Corollary 1

The only accumulation points of the set \(\{P_{k,\ell }:k, \ell \in \mathbb {N}\}\) are \(\frac{1}{2}\) and the real numbers \(e^{-k}\sum _{\nu =1}^{k-1}\frac{k^\nu }{\nu !}\) and \(1-e^{-\ell }\sum _{\nu =1}^{\ell }\frac{\ell ^\nu }{\nu !}\).

Proof

Suppose that \((k_n), (\ell _n)\) are integer sequences such that the pairs \((k_n, \ell _n)\) are all distinct and that the sequence \((P_{k_n, \ell _n})\) converges. If both \(k_n, \ell _n\) tend to infinity, then by (3) we have that \(P_{k_n, \ell _n}\) tends to \(\frac{1}{2}\). If one of these sequences does not tend to infinity, then we can pass to a subsequence and assume that \(k_n\) or \(\ell _n\) is constant. Then our claim follows from (1) or (2). \(\square \)

Together with Vietoris bound we obtain the following.

Corollary 2

We have

$$\begin{aligned} \lim _{\ell \rightarrow \infty } P_{k, \ell } \ge \frac{1}{2} - \frac{1}{\sqrt{2\pi k}}. \end{aligned}$$

Proof

We have

$$\begin{aligned} \lim _{\ell \rightarrow \infty }\left( P_{k, \ell }+P_{\ell , k}\right) = 1-\frac{k^k}{e^k k!}, \end{aligned}$$

using Stirling’s formula in the form \(k!=\left( \frac{k}{e}\right) ^k\sqrt{2\pi k}e^{\theta /12 k}\) with \(0\le \theta \le 1\), and \(P_{\ell , k}\le \frac{1}{2}\), we conclude

$$\begin{aligned} \lim _{\ell \rightarrow \infty } P_{k, \ell } \ge \frac{1}{2}-\frac{k^k}{e^k k!}\ge \frac{1}{2}-\frac{1}{\sqrt{2\pi k}}. \end{aligned}$$

\(\square \)

2 Preliminary estimates

For the proof of (3) we use another representation of \(P_{k,\ell }\), which is due to Raab [3].

Theorem 2

We have \(P_{k,\ell }=U_{k,\ell } V_{k,\ell }\), where

$$\begin{aligned} U_{k,\ell } = \exp \int _0^\infty \frac{1}{t}\left( \frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right) \left( e^{-(k+\ell )t}-e^{-kt}-e^{-\ell t}\right) \;dt, \end{aligned}$$
$$\begin{aligned} V_{k, \ell } = \frac{\sqrt{\ell }}{2\pi }\sum _{\nu =1}^\infty \frac{c_\nu (k/\ell )}{\sqrt{\nu }(\nu +\ell )}, \end{aligned}$$

and

$$\begin{aligned} c_\nu (x) = \exp \int _0^\infty \frac{1}{t}\left( \frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right) \left( e^{-\nu (1+x)t}-e^{-\nu xt}-e^{-\nu t}\right) \;dt. \end{aligned}$$

We first compute the occurring integrals.

Lemma 1

We have for \(x\ge 1\)

$$\begin{aligned} \int _0^\infty \frac{1}{t}\left( \frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right) e^{-xt}\;dt = \frac{1}{12x} + \mathcal {O}\left( \frac{1}{x^2}\right) \end{aligned}$$

and

$$\begin{aligned} \int _0^\infty \frac{1}{t}\left( \frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right) e^{-xt}\;dt = \frac{1}{2}\log x+ C + \mathcal {O}(x) \end{aligned}$$

for \(0<x\le 1\), where C is some constant.

Proof

The series expansion of \(e^x\) yields for \(t\rightarrow 0\)

$$\begin{aligned} \frac{1}{t}\left( \frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right) = \frac{1}{t^2}\left( \frac{1}{1+t/2+t^2/6+\mathcal {O}(t^3)}-1+\frac{t}{2}\right) = 1/12 + \mathcal {O}(t). \end{aligned}$$

For \(t\rightarrow \infty \) this expression tends to 0, in particular, it is bounded for all positive t. Hence for \(x\rightarrow \infty \) the integral in question becomes

$$\begin{aligned} \frac{1}{12}\int _0^\infty e^{-xt}\;dt + \mathcal {O}\left( \int _0^\infty te^{-xt}\;dt\right) = \frac{1}{12 x} + \mathcal {O}\left( \frac{1}{x^2}\right) . \end{aligned}$$

For \(x\rightarrow 0\) we use \(e^{-xt}=1-xt + \mathcal {O}(x^2t^2)\) and obtain

$$\begin{aligned} \int _0^1 \frac{1}{t}\left( \frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right) e^{-xt}\;dt = \int _0^1 \frac{1}{t}\left( \frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right) \;dt + \mathcal {O}(x) =C_1+\mathcal {O}(x) \end{aligned}$$

and

$$\begin{aligned} \int _1^\infty \frac{1}{t(e^t-1)} e^{-xt}\;dt = \int _1^\infty \frac{1}{t(e^t-1)} \;dt -x \int _1^\infty \frac{1}{e^t-1} \;dt + \mathcal {O}(x^2). \end{aligned}$$

As a function of x, the integral \(\int _1^{\infty } \frac{e^{-xt}}{t^2}\;dt\) defines a function that is differentiable from the right in 0 and has bounded second derivative in \((0,\infty )\), hence, for \(x\ge 0\) this integral is \(1+\mathcal {O}(x)\).

Finally

$$\begin{aligned} \int _1^\infty \frac{e^{-xt}}{2t}\;dt&= \int _x^\infty \frac{e^{-s}}{2s}\;ds =\\ \int _x^1\frac{dt}{2t}&+ \int _0^1\frac{e^{-t}-1}{2t}\;dt +\int _1^\infty \frac{e^{-t}}{2t}\;dt+\int _0^x\frac{1-e^{-t}}{2t}\;dt\\&= -\frac{1}{2}\log x + C_3 + \mathcal {O}(x). \end{aligned}$$

Combining these estimates our claim follows. \(\square \)

From this we obtain

Lemma 2

We have

$$\begin{aligned} U_{k, \ell } =1-\frac{1}{12}\left( \frac{1}{k}+\frac{1}{\ell }-\frac{1}{k+\ell }\right) +\mathcal {O}\left( \frac{1}{\min (k, \ell )^2}\right) . \end{aligned}$$

Proof

From Lemma 1 we obtain

$$\begin{aligned} U_{k, \ell } = \exp \left( \frac{1}{12}\left( \frac{1}{k+\ell }-\frac{1}{k}-\frac{1}{\ell }\right) +\mathcal {O}\left( \frac{1}{\min (k, \ell )^2}\right) \right) , \end{aligned}$$

inserting the Taylor series for \(\exp \) and using the fact that \(k, \ell \ge 1\) our claim follows. \(\square \)

Next we compute \(c_\nu (x)\).

Lemma 3

If \(\nu x\ge 1\), then

$$\begin{aligned} c_\nu (x)=1+\frac{1}{12\nu (1+x)}-\frac{1}{12\nu x}+\frac{1}{12\nu } + \mathcal {O}\left( \frac{1}{\nu ^2 \min (1,x^2)}\right) . \end{aligned}$$

If \(\nu x\le 1\), then

$$\begin{aligned} c_\nu (x) = K\sqrt{\nu x} + \mathcal {O}\left( \sqrt{\frac{x}{\nu }}+(\nu x)^{3/2}\right) \end{aligned}$$

for some constant K.

Proof

If \(\nu x>1\), then we apply Lemma 1 to obtain

$$\begin{aligned} c_\nu (x)= & {} \exp \left( \frac{1}{12\nu (x+1)}-\frac{1}{12\nu x}+\frac{1}{12\nu } +\mathcal {O}\left( \frac{1}{\nu ^2\min (1, x^2)}\right) \right) \\= & {} 1 + \frac{1}{12\nu (x+1)}-\frac{1}{12\nu x}+\frac{1}{12\nu }+\mathcal {O} \left( \frac{1}{\nu ^2\min (1, x^2)}\right) . \end{aligned}$$

If \(\nu x<1\), then \(\nu (x+1)\ge 1\), and we obtain

$$\begin{aligned} c_\nu (x)= & {} \exp \left( \frac{1}{12\nu (x+1)}+\frac{1}{2}\log (\nu x)+C +\frac{1}{12\nu }+\mathcal {O}\left( \frac{1}{\nu ^2}+\nu x\right) \right) \\= & {} K\sqrt{\nu x} + \mathcal {O}\left( \sqrt{\frac{x}{\nu }}+(\nu x)^{3/2}\right) . \end{aligned}$$

\(\square \)

We now compute \(V_{k,\ell }\).

Lemma 4

We have

$$\begin{aligned} V_{k,\ell } = \frac{1}{2} + \mathcal {O}\left( \frac{1}{\sqrt{k}}+\frac{1}{\sqrt{\ell }}\right) \end{aligned}$$

Proof

We have

$$\begin{aligned} \sum _{\nu \le \ell /k}\frac{c_\nu (k/\ell )}{\sqrt{\nu }(\nu +\ell )}\ll \sum _{\nu \le \ell /k}\frac{\sqrt{\nu k/\ell }}{\sqrt{\nu }(\nu +\ell )}\ll \frac{1}{\sqrt{\ell k}} \end{aligned}$$

thus,

$$\begin{aligned} V_{k,\ell }= & {} \frac{\sqrt{\ell }}{2\pi }\sum _{\nu>\ell /k}\frac{1}{\sqrt{\nu } (\nu +\ell )}\left( 1+\frac{1}{12\nu \frac{k+\ell }{\ell }} - \frac{1}{12\nu \frac{k}{\ell }} + \frac{1}{12\nu }+\mathcal {O}\left( \frac{1}{\nu ^2 \min (1, k^2/\ell ^2)}\right) \right) \\&+\, \mathcal {O}\left( \frac{1}{\sqrt{k}}\right) \\= & {} \frac{\sqrt{\ell }}{2\pi }\sum _{\nu>\ell /k}\frac{1}{\sqrt{\nu } (\nu +\ell )}\left( 1 - \frac{1}{12\nu \frac{k}{\ell }}+\mathcal {O} \left( \frac{1}{\nu ^2\min (1, k^2/\ell ^2)}\right) \right) \\&+\, \mathcal {O} \left( \frac{1}{\sqrt{k}}+\sum _{\nu>\ell /k}\frac{1}{\nu ^{3/2}\sqrt{\ell }}\right) \\= & {} \frac{\sqrt{\ell }}{2\pi }\sum _{\nu >\ell /k}\frac{1}{\sqrt{\nu }(\nu +\ell )} \left( 1 - \frac{1}{12\nu \frac{k}{\ell }}+\mathcal {O}\left( \frac{1}{\nu ^2 \min (1, k^2/\ell ^2)}\right) \right) \\&+\, \mathcal {O}\left( \frac{1}{\sqrt{k}} +\frac{1}{\sqrt{\ell }}\right) \end{aligned}$$

If \(k>\ell \) we obtain

$$\begin{aligned} V_{k,\ell }= & {} \frac{\sqrt{\ell }}{2\pi }\sum _{\nu =1}^\infty \frac{1}{\sqrt{\nu }(\nu +\ell )} + \mathcal {O}\left( \frac{1}{\sqrt{k}} +\frac{1}{\sqrt{\ell }}+\sqrt{\ell }\sum _{\nu =1}^\infty \frac{1}{\nu ^{3/2}(\nu +\ell )}\right) \\= & {} \frac{1}{2\pi }\int _0^\infty \frac{dt}{\sqrt{t}(t+1)} + \mathcal {O} \left( \frac{1}{\sqrt{k}}+\frac{1}{\sqrt{\ell }}\right) \\= & {} \frac{1}{2} + \mathcal {O}\left( \frac{1}{\sqrt{\ell }}\right) . \end{aligned}$$

We have

$$\begin{aligned} \frac{\sqrt{\ell }}{2\pi }&\sum _{\nu>\ell }\frac{1}{\sqrt{\nu }(\nu +\ell )}\left( 1 - \frac{1}{12\nu \frac{k}{\ell }}+\mathcal {O}\left( \frac{1}{\nu ^2\min (1, k^2/\ell ^2)}\right) \right) = \frac{\sqrt{\ell }}{2\pi }\sum _{\nu >\ell }\frac{1}{\sqrt{\nu }(\nu +\ell )}\\&+\,\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) , \end{aligned}$$

and for \(\ell /k\le N\le \ell \)

$$\begin{aligned} \sum _{N\le \nu \le 2N}\frac{1}{\nu ^{3/2}(\nu +\ell )} \le \frac{1}{\sqrt{N}\ell } \end{aligned}$$

as well as

$$\begin{aligned} \sum _{N\le \nu \le 2N}\frac{1}{\nu ^{5/2}(\nu +\ell )} \le \frac{1}{N^{3/2}\ell } \end{aligned}$$

and therefore

$$\begin{aligned} \sqrt{\ell }\sum _{\nu \ge \ell /k}\frac{1}{\sqrt{\nu }(\nu +\ell )} \cdot \frac{1}{\nu \frac{k}{\ell }} = \frac{\ell ^{3/2}}{k}\sum _{\nu \ge \ell /k}\frac{1}{\nu ^{3/2}(\nu +\ell )} =\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) \end{aligned}$$

and

$$\begin{aligned} \sqrt{\ell }\sum _{\nu \ge \ell /k} \frac{1}{\sqrt{\nu }(\nu +\ell )}\cdot \frac{1}{\nu ^2\min (k^2/\ell ^2)} = \frac{\ell ^{5/2}}{k^2}\sum _{\nu \ge \ell /k}\frac{1}{\nu ^{5/2}(\nu +\ell )} =\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) . \end{aligned}$$

Using these estimates we obtain

$$\begin{aligned} \frac{\sqrt{\ell }}{2\pi }&\sum _{\ell /k\le \nu \le \ell }\frac{1}{\sqrt{\nu }(\nu +\ell )} \left( 1 - \frac{1}{12\nu \frac{k}{\ell }}+\mathcal {O}\left( \frac{1}{\nu ^2 \min (1, k^2/\ell ^2)}\right) \right) =\\ \frac{\sqrt{\ell }}{2\pi }&\sum _{\ell /k\le \nu \le \ell }\frac{1}{\sqrt{\nu }(\nu +\ell )} +\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) . \end{aligned}$$

For \(k\le \ell \) we obtain

$$\begin{aligned} V_{k,\ell }= & {} \frac{\sqrt{\ell }}{2\pi }\sum _{\nu \ge \ell /k} \frac{1}{\sqrt{\nu }(\nu +\ell )} +\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) \\= & {} \frac{1}{2\pi }\int _{1/k}^\infty \frac{dt}{\sqrt{t}(t+1)} +\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) \\= & {} \frac{1}{2\pi }\int _0^\infty \frac{dt}{\sqrt{t}(t+1)} +\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) \\= & {} \frac{1}{2}+\mathcal {O}\left( \frac{1}{\sqrt{k}}\right) , \end{aligned}$$

and the proof is complete. \(\square \)

3 Proof of Theorem 1

We first prove (1). Note that this inequality is only interesting if the error term is o(1), in particular we may assume that \(k^2<\ell \). Under this assumption we have

$$\begin{aligned} P_{k, \ell }= & {} \left( \frac{\ell }{\ell +k}\right) ^{k+\ell }\sum _{\nu =0}^{k-1} \left( {\begin{array}{c}k+\ell \\ \nu \end{array}}\right) \left( \frac{k}{\ell }\right) ^\nu \\= & {} \sum _{\nu =0}^{k-1}\left( \frac{\ell }{\ell +k}\right) ^{k+\ell -\nu } \frac{k^\nu }{\nu !} \exp \left( \sum _{\mu =1}^\nu \log \frac{k+\ell -\mu }{k+\ell }\right) \\= & {} \sum _{\nu =0}^{k-1}\left( \frac{\ell }{\ell +k}\right) ^{k+\ell -\nu } \frac{k^\nu }{\nu !} \exp \left( -\sum _{\mu =1}^\nu \frac{\mu }{k+\ell }+ \mathcal {O} \left( \frac{\mu ^2}{(k+\ell )^2}\right) \right) \\= & {} \sum _{\nu =0}^{k-1}\left( \frac{\ell }{\ell +k}\right) ^{k+\ell -\nu } \frac{k^\nu }{\nu !} \exp \left( \mathcal {O}\left( \frac{\nu ^2}{\ell }\right) \right) \\= & {} \sum _{\nu =0}^{k-1}\left( \frac{\ell }{\ell +k}\right) ^{k+\ell } \frac{k^\nu }{\nu !} \exp \left( \mathcal {O}\left( \frac{k^2}{\ell }\right) \right) \\= & {} \exp \left( (k+\ell )\log \frac{\ell }{\ell +k}\right) \sum _{\nu =0}^{k-1} \frac{k^\nu }{\nu !} \exp \left( \mathcal {O}\left( \frac{k^2}{\ell }\right) \right) \\= & {} \exp \left( -k+\mathcal {O}\left( \frac{k^2}{\ell }\right) \right) \sum _{\nu =0}^{k-1}\frac{k^\nu }{\nu !}\\= & {} e^{-k}\sum _{\nu =0}^{k-1}\frac{k^\nu }{\nu !}+\mathcal {O}\left( \frac{k^2}{\ell }\right) . \end{aligned}$$

The proof of (2) is quite similar. Analogously to the previous case we may assume that \(\ell ^2<k\).

$$\begin{aligned} P_{k, \ell }= & {} \left( \frac{\ell }{\ell +k}\right) ^{k+\ell }\left( \left( \frac{\ell +k}{\ell }\right) ^{k+\ell } - \sum _{\nu =k}^{k+\ell } \left( {\begin{array}{c}k+\ell \\ \nu \end{array}}\right) \left( \frac{k}{\ell }\right) ^\nu \right) \\= & {} 1-\left( \frac{\ell }{\ell +k}\right) ^{k+\ell } \sum _{\mu =0}^{\ell } \left( {\begin{array}{c}k+\ell \\ \mu \end{array}}\right) \left( \frac{k}{\ell }\right) ^{k+\ell -\mu }\\= & {} 1-\left( \frac{k}{\ell +k}\right) ^{k+\ell } \sum _{\mu =0}^{\ell } \left( {\begin{array}{c}k+\ell \\ \mu \end{array}}\right) \left( \frac{\ell }{k}\right) ^{\mu }\\= & {} 1-\exp \left( -\ell +\mathcal {O}\left( \frac{\ell ^2}{k}\right) \right) \sum _{\mu =0}^{\ell }\frac{\ell ^\mu }{\mu !}\left( \frac{k+\ell }{k}\right) ^{\mu }\\= & {} 1-e^{-\ell }\sum _{\mu =0}^{\ell }\frac{\ell ^\mu }{\mu !}. \end{aligned}$$

Finally (3) follows from Theorem 2, Lemma 2 and Lemma 4.