Skip to main content
Log in

The role of elastic anisotropy in determining the depth of formation for diamonds and their inclusions

  • Physicochemical Properties of Matter
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Natural diamonds and their mineral inclusions represent the deepest regions of our planet. Diamonds form between about 120/130 km in the upper mantle and possibly up to 1000 km depth in the lower mantle, and they can transport mineral inclusions, which are fragments directly from regions that are inaccessible to geologists. Diamond–inclusion system is a very precious geological object not only due to the depth of provenance in the mantle but also because of the diamond age, which ranges between 3.6 and 0.09 Ga providing information over a very wide evolution time of the Earth. It is evident that the determination of the depth of formation of the diamond–inclusion system is one of the crucial aspects to retrieve fundamental geological information about the deep mantle. However, the determination of such depth is not trivial at all and different approaches could be adopted; one of the most promising is represented by the so-called “elastic geobarometry”. In this review, I will focus on elastic geobarometry and on the role that anisotropy has on the determination of the depth of diamond formation. The work will also provide a short overview of the most common approaches used to retrieve the depth of diamond formation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

The above image (modified from Anzolini et al. 2019) shows the irregular diamond with two periclase inclusions. The image in the bottom shows the same two periclase inclusions reconstructed by synchrotron X-ray micro-tomography (again modified from Anzolini et al. 2019)

Similar content being viewed by others

References

  • Adams HG, Cohen LH, Rosenfeld JL (1975a) Solid inclusion piezothermometry I: comparison dilatometry. Am Mineral 60:574–583

    Google Scholar 

  • Adams HG, Cohen LH, Rosenfeld JL (1975b) Solid inclusion piezothermometry II: geometric basis, calibration for the association quartz-garnet, and application to some pelitic shists. Am Mineral 60:584–598

    CAS  Google Scholar 

  • Alvaro M, Mazzucchelli ML, Angel RJ, Murri M, Campomenosi N, Scambelluri M, Nestola F, Korsakov A, Tomilenko AA, Marone F, Morana M (2020) Fossil subduction recorded by quartz from the coesite stability field. Geology 48:24–28

    Article  Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in highpressure crystallography. J Appl Crystallogr 30:461–466

    Article  CAS  Google Scholar 

  • Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F (2014) Geobarometry from host-inclusion systems: the role of elastic relaxation. Am Mineral 99:2146–2149

    Article  Google Scholar 

  • Angel RJ, Alvaro M, Nestola F, Mazzucchelli ML (2015) Diamond thermoelastic properties and implications for determining the pressure of formation of diamond-inclusion systems. Russ Geol Geophys 56:225–234

    Article  Google Scholar 

  • Angel RJ, Alvaro M, Miletich R, Nestola F (2017) A simple and generalised P-T–V EoS for continuous phase transitions, implemented in EosFit and applied to quartz. Contrib Mineral Petrol 172:29

    Article  CAS  Google Scholar 

  • Angel RJ, Alvaro M, Nestola F (2018) 40 years of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. Phys Chem Miner 45:95–113

    Article  CAS  Google Scholar 

  • Angel RJ, Murri M, Mihailova B, Alvaro M (2019) Stress, strain and Raman shifts. Z Krist Cryst Mater 234:129–140

    Article  CAS  Google Scholar 

  • Anzolini C (2018) Depth of formation of super-deep diamonds. [Ph.D. thesis] University of Padova, Italy

  • Anzolini C, Angel RJ, Merlini M, Derzsi M, Tokar K, Milani S, Krebs MY, Brenker FE, Nestola F, Harris JW (2016) Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 265:138–147

    Article  CAS  Google Scholar 

  • Anzolini C, Prencipe M, Alvaro M, Romano C, Vona A, Lorenzon S, Smith EM, Brenker FE, Nestola F (2018) Depth of formation of super-deep diamonds: Raman barometry of CaSiO3-walstromite inclusions. Am Mineral 103:69–74

    Article  Google Scholar 

  • Anzolini C, Nestola F, Mazzucchelli ML, Alvaro M, Nimis P, Gianese A, Morganti S, Marone F, Campione M, Hutchison MT, Harris JW (2019) Depth of diamond formation obtained from single periclase inclusions. Geology 47:219–222

    Article  CAS  Google Scholar 

  • Armstrong LS, Walter MJ (2012) Tetragonal almandine pyrope phase (TAPP): retrograde Mg-perovskite from subducted oceanic crust? Eur J Mineral 24:587–597

    Article  CAS  Google Scholar 

  • Barron BJ, Barron L, Duncan G (2005) Eclogitic and ultrahigh-pressure crustal garnets and their relationship to Phanerozoic subduction diamonds, Bingara area, New England Fold Belt, eastern Australia. Econ Geol 100:1565–1582

    Article  CAS  Google Scholar 

  • Binvignat FAP, Malcherek T, Angel RJ, Paulmann C, Schlüter J, Mihailova B (2018) Radiation-damaged zircon under high pressures. Phys Chem Miner 45:981–993

    Article  CAS  Google Scholar 

  • Bonazzi M, Tumiati S, Thomas JB, Angel RJ, Alvaro M (2019) Assessment of the reliability of elastic geobarometry with quartz inclusions. Lithos 350:105201

    Article  CAS  Google Scholar 

  • Brenker FE, Vincze L, Vekemans B, Nasdala L, Stachel T, Vollmer C, Kersten M, Somogyi A, Adams F, Joswig W, Harris JW (2005) Detection of a Ca-rich lithology in the Earth’s deep (%3e 300 km) convecting mantle. Earth Planet Sci Lett 236:579–587

    Article  CAS  Google Scholar 

  • Brenker FE, Nestola F, Brenker L, Peruzzo L, Harris JW (2020) Origin, properties and structure of breyite: the second most abundant mineral inclusion in super-deep diamonds. Am Mineral (Submitted)

  • Brey GP, Bulatov VK, Girnis AV (2008) Geobarometry for peridotites: experiments in simple and natural systems from 6 to 10 GPa. J Petrol 49:3–24

    Article  CAS  Google Scholar 

  • Campomenosi N, Mazzucchelli ML, Mihailova B, Scambelluri M, Angel RJ, Nestola F, Reali A, Alvaro M (2018) How geometry and anisotropy affect residual strain in host-inclusion systems: coupling experimental and numerical approaches. Am Mineral 103:2032–2035

    Article  Google Scholar 

  • Campomenosi N, Mazzucchelli ML, Mihailova B, Angel RJ, Alvaro M (2020) Using polarized Raman spectroscopy to study the stress gradient in mineral systems with anomalous birefringence. Contrib Mineral Petrol 175:16

    Article  CAS  Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118

    Article  CAS  Google Scholar 

  • Eshelby JD (1959) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Math 241:376–396

    Google Scholar 

  • Frost DJ (2008) The upper mantle and the transition zone. Elements 4:171–176

    Article  CAS  Google Scholar 

  • Gasparik T, Wolf K, Smith CM (1994) Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am Mineral 79:1219–1222

    CAS  Google Scholar 

  • Hirose K, Fei YW (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim Cosmochim Ac 66:2099–2108

    Article  CAS  Google Scholar 

  • Howell D (2012) Strain-induced birefringence in natural diamond: a review. Eur J Mineral 24:575–585

    Article  CAS  Google Scholar 

  • Howell D, Wood IG, Dobson DP, Jones AP, Nasdala L, Harris JW (2010) Quantifying strain birefringence halos around inclusions in diamond. Contrib Mineral Petrol 160:705–717

    Article  CAS  Google Scholar 

  • Howell D, Wood IG, Nestola F, Nimis P, Nasdala L (2012) Inclusions under remnant pressure in diamond: a multi-technique approach. Eur J Mineral 24:563–573

    Article  CAS  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (1999) Raman barometry of diamond formation. Earth Planet Sci Lett 173:351–360

    Article  CAS  Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  CAS  Google Scholar 

  • Koornneef JM, Gress MU, Chinn IL, Jelsma HA, Harris JW, Davies GR (2017) Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism. Nat Commun 8:648

    Article  CAS  Google Scholar 

  • Kueter N, Soesilo J, Fedortchouk Y, Nestola F, Belluco L, Troch J, Walle M, Guillong M, Von Quadt A, Driesner T (2016) Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies. Lithos 265:159–176

    Article  CAS  Google Scholar 

  • Mazzucchelli ML, Burnley P, Angel RJ, Morganti S, Domeneghetti MC, Nestola F, Alvaro M (2018) Elastic geothermobarometry: corrections for the geometry of the host-inclusion system. Geology 46:231–234

    Article  CAS  Google Scholar 

  • Mazzucchelli ML, Angel RJ, Morganti S, Alvaro M (2019a) EntraPT: a GUI program for anisotropic elastic thermobarometry. In: Joint conference SIMP-SGI, 16–19 September 2019, conference abstract number: 7–10. Parma, Italy

  • Mazzucchelli ML, Reali A, Morganti S, Angel RJ, Alvaro M (2019b) Elastic geobarometry for anisotropic inclusions in cubic hosts. Lithos 350(351):105218

    Article  CAS  Google Scholar 

  • Mazzucchelli ML, Angel RJ, Alvaro M (2020) EntraPT: a web application for elastic geothermobarometry. Minerals (Submitted)

  • Mihailova B, Waeselmann N, Stangarone C, Angel RJ, Prencipe M, Alvaro M (2019) The pressure-induced phase transition(s) of ZrSiO4. Phys Chem Miner 46:807–814

    Article  CAS  Google Scholar 

  • Milani S, Nestola F, Alvaro M, Pasqual D, Mazzucchelli ML, Domeneghetti MC, Geiger CA (2015) Diamond-garnet geobarometry: the role of garnet compressibility and expansivity. Lithos 227:140–147

    Article  CAS  Google Scholar 

  • Morganti S, Mazzucchelli ML, Alvaro M, Reali A (2020) A numerical application of the Eshelby theory for geobarometry of non-ideal host-inclusion systems. Meccanica. https://doi.org/10.1007/s11012-020-01135-z

    Article  Google Scholar 

  • Murri M, Mazzucchelli ML, Campomenosi N, Korsakov AV, Prencipe M, Mihailova BD, Scambelluri M, Angel RJ, Alvaro M (2018) Raman elastic geobarometry for anisotropic mineral inclusions. Am Mineral 103:1869–1872

    Google Scholar 

  • Murri M, Alvaro M, Angel RJ, Prencipe M, Mihailova BD (2019) The effects of non-hydrostatic stress on the structure and properties of alpha-quartz. Phys Chem Miner 46:487–499

    Article  CAS  Google Scholar 

  • Nestola F (2015) The crucial role of crystallography in diamond research. Rend Fis Acc Lincei 26:225–233

    Article  Google Scholar 

  • Nestola F, Nimis P, Ziberna L, Longo M, Marzoli A, Harris JW, Manghnani MH, Fedortchouk Y (2011) First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth’s mantle. Earth Planet Sci Lett 305:249–255

    Article  CAS  Google Scholar 

  • Nestola F, Nimis P, Angel RJ, Milani S, Bruno M, Prencipe M, Harris JW (2014) Olivine with diamond-imposed morphology included in diamonds. Syngenesis or protogenesis? Int Geol Rev 56:1658–1667

    Article  Google Scholar 

  • Nestola F, Burnham AD, Peruzzo L, Tauro L, Alvaro M, Walter MJ, Gunter M, Anzolini C, Kohn S (2016) Tetragonal almandine pyrope phase, TAPP: finally a name for it, the new mineral jeffbenite. Mineral Mag 80:1219–1232

    Article  CAS  Google Scholar 

  • Nestola F, Jung H, Taylor LA (2017) Mineral inclusions in diamonds may be synchronous but not syngenetic. Nat Commun 8:14168

    Article  CAS  Google Scholar 

  • Nestola F, Prencipe M, Nimis P, Sgreva N, Perritt SH, Chinn IL, Zaffiro G (2018) Toward a robust elastic geobarometry of kyanite inclusions in eclogitic diamonds. J Geophys Res Solid Earth 123:6411–6423

    CAS  Google Scholar 

  • Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson DG, Pamato MG, Alvaro M, Peruzzo L, Gurney JJ, Moore AE, Davidson J (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555:237–240

    Article  CAS  Google Scholar 

  • Nestola F, Zaffiro G, Mazzucchelli ML, Nimis P, Andreozzi GB, Periotto B, Princivalle F, Lenaz D, Secco L, Pasqualetto L, Logvinova AM, Sobolev NV, Lorenzetti A, Harris JW (2019) Diamond-inclusion system recording old deep lithosphere conditions at Udachnaya (Siberia). Sci Rep 9:12586

    Article  CAS  Google Scholar 

  • Nestola F, Jacob DE, Pamato MG, Pasqualetto L, Oliveira B, Greene S, Perritt S, Chinn I, Milani S, Kueter N, Sgreva N, Nimis P, Secco L, Harris JW (2019) Protogenetic garnet inclusions and the age of diamonds. Geology 47:431–434

    Article  CAS  Google Scholar 

  • Nimis P (2002) The pressures and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions. Can Mineral 40:871–884

    Article  CAS  Google Scholar 

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159:411–427

    Article  CAS  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  CAS  Google Scholar 

  • Nimis P, Alvaro M, Nestola F, Angel RJ, Marquardt K, Rustioni G, Harris JW, Marone F (2016) First evidence of hydrous silicic fluid films around solid inclusions in gem-quality diamonds. Lithos 260:384–389

    Article  CAS  Google Scholar 

  • Pearson DG, Shirey SB (1999) Isotopic dating of diamond. Econ Geol 9:143–171

    Google Scholar 

  • Pearson DG, Brenker F, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) A hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224

    Article  CAS  Google Scholar 

  • Rosenfeld JC, Chase AB (1961) Pressure and temperature of crystallization from elastic effects around solid inclusions in minerals? Am J Sci 259:519–541

    Article  CAS  Google Scholar 

  • Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, Nimis P, Pearson DG, Sobolev NV, Walter MJ (2013) Diamonds and the geology of mantle carbon. Rev Mineral Geochem 75:355–421

    Article  CAS  Google Scholar 

  • Shirey SB, Smit KV, Pearson DG, Walter MJ, Aulbach S, Brenker FE, Bureau H, Burnham AD, Cartigny P, Chacko T, Frost DJ, Hauri EH, Jacob DE, Jacobsen SD, Kohn SC, Luth RW, Mikhail S, Navon O, Nestola F, Nimis P, Palot M, Smith EM, Stachel T, Stagno V, Steele A, Stern RA, Thomassot E, Thomson AR, Weiss Y (2019) Diamonds and the mantle geodynamics of carbon—deep mantle carbon evolution from the diamond record. In: Orcutt BN, Daniel I, Dasgupta R (eds) Deep carbon—past to present. Cambridge University Press, Cambridge, pp 90–128

    Google Scholar 

  • Smith EM, Shirey SB, Richardson SH, Nestola F, Bullocks ES, Wang JH, Wang WY (2018) Blue boron-bearing diamonds from Earth's lower mantle. Nature 560:84–87

    Article  CAS  Google Scholar 

  • Sobolev NV, Fursenko BA, Goryainov SV, Shu J, Hemley RJ, Mao A, Boyd FR (2000) Fossilized high pressure from the earth’s deep interior: the coesite-in-diamond barometer. Proc Natl Acad Sci USA 97:11875–11879

    Article  CAS  Google Scholar 

  • Speich L, Kohn SC, Bulanova GP, Smith CB (2018) The behaviour of platelets in natural diamonds and the development of a new mantle thermometer. Contrib Mineral Petrol 173:39

    Article  CAS  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Stangarone C, Angel RJ, Prencipe M, Campomenosi N, Mihailova B, Alvaro M (2019) Measurement of strains in zircon inclusions by Raman spectroscopy. Eur J Mineral 31:685–694

    Article  CAS  Google Scholar 

  • Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57

    Article  CAS  Google Scholar 

  • Wijbrans CH, Rohrbach A, Klemme S (2016) An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol 171:50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the European Research Council Starting Grant (agreement n. 307322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Nestola.

Ethics declarations

Ethical statement

The work has not any potentical conflicts of interests and does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestola, F. The role of elastic anisotropy in determining the depth of formation for diamonds and their inclusions. Rend. Fis. Acc. Lincei 31, 285–293 (2020). https://doi.org/10.1007/s12210-020-00897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00897-8

Keywords

Navigation