Skip to main content
Log in

A numerical application of the Eshelby theory for geobarometry of non-ideal host-inclusion systems

  • Computational Models for ’Complex’ Materials and Structures, beyond the Finite Elements
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the complex geodynamic processes occurring at convergent plate margins, rocks can be subducted at depth into the Earth experiencing metamorphism. A mineral inhomogeneity entrapped into another mineral, after exhumation to the Earth surface, will exhibit stress and strain fields different from those of the host because of the different thermoelastic properties. In the present paper, we propose a finite-element-based approach to determine the Eshelby and the relaxations tensors for any morphology of the inhomogeneity and for any crystallographic symmetry of the host. The proposed procedure can be directly applied in the framework of elastic geobarometry to estimate, on the basis of the Eshelby theory, the entrapment conditions (pressure and temperature) from the residual strain field measured in the inhomogeneity. This aspect represents a step forward to currently available models for geobarometry allowing the investigation of complex morphologies of the inhomogeneity in systems with general material anisotropy. We validate the proposed approach versus Eshelby analytical solutions available for spherical and ellipsoidal inclusions and we show the application to a real geological case of high pressure metamorphic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

The figure is adapted from Anzolini et al. [9]

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Material properties from Özkan et al. [33]

  2. Material properties from Angel et al. [4] and Lakshtanov et al. [24]

References

  1. Alvaro M, Mazzucchelli ML, Angel RJ, Murri M, Campomenosi N, Scambelluri M, Nestola F, Korsakov A, Tomilenko AA, Marone F, Morana M (2020) Fossil subduction recorded by quartz from the coesite stability field. Geology 48(1):24–28

    Article  ADS  Google Scholar 

  2. Andrianov I, Argatov I, Weichert D (2008) On the absence of the eshelby property for slender non-ellipsoidal inhomogeneities. Proc R Soc A Math Phys Eng Sci 464(2093):1079–1088

    Article  MathSciNet  ADS  Google Scholar 

  3. Angel R (2000) Equations of state: chapter 2. In: Hazen R, Downs R (eds) Reviews in mineralogy: high temperature and high pressure crystal chemistry, vol 41. Mineralogical Society of America, Washington, DC, pp 117–211

    Google Scholar 

  4. Angel R, Alvaro M, Miletich R, Nestola F (2017) A simple and generalized P-V-T EoS for continuous phase transition, implemented in EosFit and applied to quartz. Contrib Mineral Petrol 172(5):29

    Article  ADS  Google Scholar 

  5. Angel R, Finger L (2011) SINGLE: a program to control single-crystal diffractometers. J Appl Crystallogr 44(1):247–251

    Article  Google Scholar 

  6. Angel R, Milani S, Alvaro M, Nestola F (2016) High-quality structures at high pressure? Insights from inclusions in diamonds. Z Kristallogr Cryst Mater 231(8):467–473

    Article  Google Scholar 

  7. Angel R, Murri M, Mihailova B, Alvaro M (2018) Stress, strain and Raman shifts. Z Kristallogr Cryst Mater 234(2):129–140

    Article  Google Scholar 

  8. Angel R, Nimis P, Mazzucchelli M, Alvaro M, Nestola F (2015) How large are departures from lithostatic pressure? Constraints from host-inclusion elasticity. J Metamorph Geol 33(8):801–813

    Article  ADS  Google Scholar 

  9. Anzolini C, Nestola F, Mazzucchelli M, Alvaro M, Nimis P, Gianese A, Morganti S, Marone F, Campione M, Hutchison M, Harris J (2019) Depth of diamond formation obtained from single periclase inclusions. Geology 47(3):219–222

    Article  ADS  Google Scholar 

  10. Bigoni D, Dal Corso F, Bosi F, Misseroni D (2015) Eshelby-like forces acting on elastic structures: theoretical and experimental proof. Mech Mater 80:368–374

    Article  Google Scholar 

  11. Bower A (2010) Applied mechanics of solids. CRC Press, Boca Raton

    Google Scholar 

  12. Buryachenko V, Brun M (2012) Random residual stresses in elasticity homogeneous medium with inclusions of noncanonical shape. Int J Multiscale Comput Eng 10(3):261–279

    Article  Google Scholar 

  13. Campomenosi N, Mazzucchelli ML, Mihailova B, Scambelluri M, Angel RJ, Nestola F, Reali A, Alvaro M (2018) How geometry and anisotropy affect residual strain in host-inclusion systems: coupling experimental and numerical approaches. Am Mineral 103(12):2032–2035

    Article  ADS  Google Scholar 

  14. Chiang CR (2017) On Eshelby’s tensor in transversely isotropic materials. Acta Mech 228(5):1819–1833

    Article  MathSciNet  Google Scholar 

  15. Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  MathSciNet  ADS  Google Scholar 

  16. Eshelby J (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc Lond A 252:561–569

    Article  MathSciNet  ADS  Google Scholar 

  17. Franciosi P (2005) On the modified green operator integral for polygonal, polyhedral and other non-ellipsoidal inclusions. Int J Solids Struct 42(11/12):3509–3531

    Article  Google Scholar 

  18. Franciosi P (2014) Mean and axial green and eshelby tensors for an inclusion with finite cylindrical shape. Mech Res Commun 59:26–36

    Article  Google Scholar 

  19. Franciosi P, Charles Y (2016) Mean green operators and eshelby tensors for hemispherical inclusions and hemisphere interactions in spheres. Application to bi-material spherical inclusions in isotropic spaces. Mech Res Commun 75:57–66

    Article  Google Scholar 

  20. Grüneisen E (1926) Zustand des festen Körpers. In: Drucker C et al (eds) Thermische Eigenschaften der Stoffe. Springer, Berlin, pp 1–59

    Google Scholar 

  21. Key SW (1967) Grüneisen tensor for anisotropic materials. J Appl Phys 38:2923

    Article  ADS  Google Scholar 

  22. Kneer G (1965) Über die Berechnung der Elastizitätsmoduln vielkristalliner Aggregate mit Textur. Phys Status Solidi (b) 9(3):825–838

    Article  ADS  Google Scholar 

  23. Korsakov A, Perraki M, Zhukov V, De Gussem K, Vandenabeele P, Tomilenko A (2009) Is quartz a potential indicator of ultrahigh-pressure metamorphism? Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. Eur J Mineral 21(6):1313–1323

    Article  Google Scholar 

  24. Lakshtanov D, Sinogeikin S, Bass J (2007) High-temperature phase transitions and elasticity of silica polymorphs. Phys Chem Miner 34(1):11–22

    Article  ADS  Google Scholar 

  25. Litasov K, Malkovets V, Kostrovitsky S, Taylor L (2003) Petrogenesis of ilmenite-bearing symplectite xenoliths from Vitim alkaline basalts and Yakutian kimberlites, Russia. Int Geol Rev 45(11):976–997

    Article  Google Scholar 

  26. Marfia S, Sacco E (2005) Eshelby-like forces acting on elastic structures: theoretical and experimental proof. J Appl Mech 72(2):259–268

    Article  Google Scholar 

  27. Marone F, Stampanoni M (2012) Regridding reconstruction algorithm for real-time tomographic imaging. J Synchrotron Radiat 19(6):1029–1037

    Article  Google Scholar 

  28. Mazzucchelli M, Burnley P, Angel R, Morganti S, Domeneghetti M, Nestola F, Alvaro M (2018) Elastic geothermobarometry: corrections for the geometry of the host-inclusion system. Geology 46(3):231–234

    Article  ADS  Google Scholar 

  29. Mazzucchelli ML, Reali A, Morganti S, Angel RJ, Alvaro M (2019) Elastic geobarometry for anisotropic inclusions in cubic hosts. Lithos 350–351:105218

    Article  Google Scholar 

  30. Mura T (1987) Micromechanics of defects in solids. Springer, Berlin

    Book  Google Scholar 

  31. Murri M, Mazzucchelli M, Campomenosi N, Korsakov A, Prencipe M, Mihailova B, Scambelluri M, Angel R, Alvaro M (2018) Raman elastic geobarometry for anisotropic mineral inclusions. Am Mineral 103(11):1869–1872

    Google Scholar 

  32. Nozaki H, Taya M (2001) Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. J Appl Mech 68:441–452

    Article  Google Scholar 

  33. Özkan H, Cartz L, Jamieson JC (1974) Elastic constants of nonmetamict zirconium silicate. J Appl Phys 45(2):556–562

    Article  ADS  Google Scholar 

  34. Parnell W (2016) The eshelby, hill, moment and concentration tensors for ellipsoidal inhomogeneities in the newtonian potential problem and linear elastostatics. J Elast 125(2):231–294

    Article  MathSciNet  Google Scholar 

  35. Rodin G (1996) Eshelby’s inclusion problem for polygons and polyhedrons. J Mech Phys Solids 44:1977–1995

    Article  ADS  Google Scholar 

  36. Rosenfeld J, Chase A (1961) Pressure and temperature of crystallization from elastic effects around solid inclusions in minerals. Am J Sci 259(7):519–541

    Article  ADS  Google Scholar 

  37. Sinogeikin S, Bass J (2002) Elasticity of Majorite and a Majorite-Pyrope solid solution to high pressure: Implications for the Transition Zone. Geophys Res Lett 29(2):4–1

    Article  Google Scholar 

  38. Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Böhler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. In: Proceedings developments in X-ray tomography, vol 6318. International Society for Optics and Photonics, p 63180M-14

  39. Tomilenko A, Kovyazin S, Pokhilenko N (2005) Primary crystalline and fluid inclusions in garnet from diamondiferous eclogite from kimberlite pipes Mir and Udachnaya, Yakutiya, Russia. In: ECROFI XVIII. European current research on fluid inclusions, Siena, Italy

  40. Withers PJ (1989) The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 59(4):759–781

    ADS  Google Scholar 

  41. Zhang L, Ahsbahs H, Kutoglu A (1998) Hydrostatic compression and crystal structure of pyrope to 33 GPa. Phys Chem Miner 25(4):301–307

    Article  ADS  Google Scholar 

  42. Zou W, He Q, Zheng Q (2011) General solution for Eshelby’s problem of 2D arbitrarily shaped piezoelectric inclusions. Int J Solids Struct 48(19):2681–2694

    Article  Google Scholar 

Download references

Acknowledgements

AR has been partially supported by the MIUR-PRIN project XFAST-SIMS (No. 20173C478N) while MA and MLM have been partially supported by the the ERC-StG 2016 TRUE DEPTHS (Grant 714936) and by the FARE-MIUR: StackIng disorder in diaMonds as a marker for the history of Pre-solAr Carbon (IMPACt, FARE-MIUR n. R164WEJAHH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Eshelby and relaxation tensors

Appendix: Eshelby and relaxation tensors

We here report the components of \(\varvec{S}\) and \(\varvec{R}\) computed both with an analytical approach and with a finite element-based numerical methodology for the case of an ellipsoidal quartz inhomogeneity in zircon host (see Sect. 5.1). Elastic isotropic constitutive equations are assumed for both the minerals. The considered model is discretized with \(\approx 3 \cdot 10^5\) nodes.

Table 1 Components of the Eshelby tensor (\(\varvec{S}\)) calculated with the numerical approach proposed in this paper and compared against the analytical solution
Table 2 Components of the relaxation tensor (\(\varvec{R}\)) calculated with the numerical approach proposed in this paper and compared against the analytical solution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morganti, S., Mazzucchelli, M.L., Alvaro, M. et al. A numerical application of the Eshelby theory for geobarometry of non-ideal host-inclusion systems. Meccanica 55, 751–764 (2020). https://doi.org/10.1007/s11012-020-01135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01135-z

Keywords

Navigation