Skip to main content
Log in

New opportunity to investigate physico-chemical phenomena: time-resolved X-ray and IR concurrent analysis

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The characterization of both collective and individual excitations occurring in condensed matter and biological systems are of great interests for both fundamental and technological researches. New time-resolved and concurrent approaches are required to characterize complex systems where physical–chemical phenomena occur due to the interplay between localized and delocalized electrons, and in particular to characterize systems in non-equilibrium conditions. In this contribution, we present an optical layout that may take advantage of the high brilliance and the naturally wide spectral-distribution of the synchrotron radiation emission covering the range from the IR to the hard X-ray region. Thanks to the brilliance and the power associated to third generation storage rings with a conceptual new beamline design combining an IR and an X-ray beam, it will be possible to investigate dynamical processes with a time resolution down to the sub-millisecond regime, resolving plenty of correlated structural, electronic and vibrational phenomena. To demonstrate the unique advantages of this time-resolved concurrent experimental approach, among the many existing scientific cases, a few interesting but unresolved scientific cases are reviewed and potential applications of the new analytical tool are envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bourgeois D, Schotte F, Brunori M, Vallone B (2007) Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics. Photochem Photobiol Sci 6:1047–1056

    Article  CAS  Google Scholar 

  • Bras W, Derbyshire GE, Bogg D, Cooke J, Elwell MJ, Komanschek BU, Naylor S, Ryan AJ (1995) Simultaneous studies of reaction kinetics and structure development in polymer processing. Science 267:996–999

    Article  CAS  Google Scholar 

  • Bressler C, Milne C, Pham VT, Elnahhas A, Van Der Veen RM, Gawelda W, Johnson S, Beaud P, Grolimund D, Kaiser M, Borca CN, Ingold G, Abela R, Chergui M (2009) Femtosecond XANES study of the light-induced spin crossover dynamics in an Iron(II) complex. Science 323:489–492

    Article  CAS  Google Scholar 

  • Ceppatelli M, Bini R et al (2011) High-pressure reactivity of clathrate hydrates by two-photon dissociation of water. Phys Chem Chem Phys 13(4):1264–1275

    Article  CAS  Google Scholar 

  • Colarusso P, Kidder LH, Levin IW, Fraser JC, Arens JF, Lewis EN (1998) Infrared spectroscopic imaging: from planetary to cellular systems. Appl. Spectrosc 52:106A–120A

    Article  CAS  Google Scholar 

  • Coradini A, Capaccioni F, Drossart P, Arnold G, Ammannito E, Angrilli F, Barucci A, Bellucc IG, Benkhoff J, Bianchini G, Bibring J, Blecka M, Bockelee-Morvan D, Capria M, Carlson R, Carsenty U, Cerroni P, Colangeli L, Combes M, Combi M, Crovisier J, Desanctis M, Encrenaz E, Erard S, Federico C, Filacchione G, Fink U, Fonti S, Formisano V, Ip W, Jaumann R, Kuehrt E, Langevin Y, Magni G, Mccord T, Mennella V, Mottola S, Neukum G, Palumbo P, Piccioni G, Rauer H, Saggin B, Schmitt B, Tiphene D, Tozzi G (2007) Virtis: an imaging spectrometer for the Rosetta mission. Space Sci Rev 128:529–559

    Google Scholar 

  • Cotte M, Susini J, Sole VA, Taniguchi Y, Chillida J, Checroun E, Walter P (2008) Applications of synchrotron-based micro-imaging techniques to the chemical analysis of ancient paintings. J Anal At Spectrom 23:820–828

    Article  CAS  Google Scholar 

  • Crone TJ, Tolstoy M (2010) Magnitude of the 2010 Gulf of Mexico oil leak. Science 330:634

    Article  CAS  Google Scholar 

  • Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830

    Article  CAS  Google Scholar 

  • Goodenough JB (1971) The two components of the crystallographic transition in VO2. J Solid State Chem 3:490–500

    Article  CAS  Google Scholar 

  • Groot FMFD, Smit ED, Schooneveld MMV, Aramburo LR, Weckhuysen BM (2010) In situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. Chem Phys Chem 11:951–962

    Google Scholar 

  • Guilera G, Newton MA, Polli C, Pascarelli S, Guino M, Hii KK (2006) In situ investigation of the oxidative addition in homogeneous Pd catalysts by synchronised time resolved UV–Vis/EXAFS. Chem Commun 41:4306–4308

    Google Scholar 

  • Guo T (2009) More power to X-rays: new developments in X-ray spectroscopy. Laser Photon Rev 3:591–622

    Article  CAS  Google Scholar 

  • Haumann M, Müller C, Liebisch P, Neisius T, Dau H (2005) A novel BioXAS technique with sub-millisecond time resolution to track oxidation state and structural changes at biological metal centers. J Synchrotron Rad 12:35–44

    Article  CAS  Google Scholar 

  • Heberle J, Gensch T (2001) When FT-IR spectroscopy meets X-ray crystallography. Nat Struct Mol Biol 8:195–197

    Article  CAS  Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  CAS  Google Scholar 

  • Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  • Hettel RO (2002) Beam stability at light sources. Rev Sci Instrum 73:1396–1401

    Article  CAS  Google Scholar 

  • Iles G, Dent A, Derbyshire G, Farrow R, Hall G, Noyes G, Raymond M, Salvini G, Seller P, Smith M, Thomas S (2000) A novel application of silicon microstrip technology for energy-dispersive EXAFS studies. J Synchrotron Rad 7:221–228

    Article  CAS  Google Scholar 

  • Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039–1263

    Article  CAS  Google Scholar 

  • Innocenzi P, Malfatti L, Kidchob T, Costacurta S, Falcaro P, Piccinini M, Marcelli A, Morini P, Sali D, Amenitsch H (2007) Time-resolved simultaneous detection of structural and chemical changes during self-assembly of mesostructured films. J Phys Chem C 111:5345–5350

    Article  CAS  Google Scholar 

  • Kidchob T, Malfatti L, Marongiu D, Enzo S, Innocenzi P (2010) Sol–gel processing of Bi2Ti2O7 and Bi2Ti4O11 films with photocatalytic activity. J Am Ceram Soc 93:2897–2902

    Article  CAS  Google Scholar 

  • Liu L, Gao B, Chu W, Chen D, Hu T, Wang C, Dunsch L, Marcelli A, Luo Y, Wu Z (2008) The structural determination of endohedral metallofullerene Gd@C82 by XANES. Chem Commun 4:474–476

    Article  Google Scholar 

  • Liu W-T, Cao J, Fan W, Hao Z, Martin MC, Shen YR, Wu J, Wang F (2011) Intrinsic optical properties of vanadium dioxide near the insulator–metal transition. Nano Lett 11:466–470

    Article  CAS  Google Scholar 

  • Lupi S, Baldassarre L, Mansart B, Perucchi A, Barinov A, Dudin P, Papalazarou E, Rodolakis F, Rueff JP, Iti JP, Ravy S, Nicoletti D, Postorino P, Hansmann P, Parragh N, Toschi A, Saha-dasgupta T, Andersen OK, Sangiovanni G, Held K, Marsi M (2010) A microscopic view on the Mott transition in chromium-doped V2O3. Nat Commun 1:105–119

    Article  CAS  Google Scholar 

  • Mao WL, Mao H-K, Goncharov AF, Struzhkin VV, Guo Q, Hu J, Shu J, Hemley RJ, Somayazulu M, Zhao Y (2002) Hydrogen clusters in clathrate hydrate. Science 297:2247–2249

    Article  CAS  Google Scholar 

  • Marcelli A, Hampai D, Wei Xu, Malfatti L, Innocenzi P (2009a) Time resolved ir and X-ray simultaneous spectroscopy: new opportunities for the analysis of fast chemical-physical phenomena in materials science. Acta Phys Pol A 115:489–500

    CAS  Google Scholar 

  • Marcelli A, Xu W, Liu L, Wang C, Chu W, Wu Z (2009b) Dynamical behavior in C82 metal endohedral fullerenes: 2D correlation analysis of X-ray and infrared data. J Nanophotonics 3:031975–031979

    Article  Google Scholar 

  • Marcelli A, Xu W, Hampai D, Malfatti L, Innocenzi P, Schade U, Wu Z (2010) Infrared and X-ray simultaneous spectroscopy: a novel conceptual beamline design for time resolved experiments. Anal Bioanal Chem 397:2095–2108

    Article  CAS  Google Scholar 

  • Mills DM, Lewis A, Harootunian A, Huang J, Smith B (1984) Time-resolved X-ray absorption spectroscopy of carbon monoxide-myoglobin recombination after laser photolysis. Science 223:811–813

    Article  CAS  Google Scholar 

  • Mott NF (1968) Metal-insulator transition. Rev Mod Phys 40:677–683

    Article  CAS  Google Scholar 

  • Newton MA, Van Beek W (2010) Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem Soc Rev 39:4845–4863

    Article  CAS  Google Scholar 

  • Newton MA, Michiel MD, Kubacka A, Fernández-García M (2010) Combining time-resolved hard X-ray diffraction and diffuse reflectance infrared spectroscopy to illuminate CO dissociation and transient carbon storage by supported Pd nanoparticles during CO/NO cycling. J Am Chem Soc 132:4540–4541

    Article  CAS  Google Scholar 

  • Oyanagi H (1993) Future prospects of XAFS researches using high brilliance photon sources. Jpn J Appl Phys Suppl 32(2):861–868

    CAS  Google Scholar 

  • Pascarelli S, Neisius T, De Panfilis S (1999) Turbo-XAS: dispersive XAS using sequential acquisition. J Synchrotron Rad 6:1044–1050

    Article  CAS  Google Scholar 

  • Pascarelli S, Mathon O, Muñoz M, Mairs T, Susini J (2006) Energy-dispersive absorption spectroscopy for hard-X-ray micro-XAS applications. J Synchrotron Rad 13:351–358

    Article  CAS  Google Scholar 

  • Peierls RE (1955) Quantum theory of solids. Oxford University Press, Clarendon

    Google Scholar 

  • Phillips R, Quake SR (2006) The biological frontier of physics. Phys Today 59:38–43

    Article  CAS  Google Scholar 

  • Qazilbash MM, Brehm M, Chae B-G, HO PC, Andreev GO, Kim B-J, Yun SJ, Balatsky AV, Maple MB, Keilmann F, Kim H-T, Basov DN (2007) Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318:1750–1753

    Article  CAS  Google Scholar 

  • Radu I, Schleeger M, Bolwien C, Heberle J (2009) Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. Photochem Photobiol Sci 8:1517–1528

    Article  CAS  Google Scholar 

  • Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Durr HA, Ostler TA, Barker J, Evans RF, Chantrell RW, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel AV (2011) Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472:205–208

    Article  CAS  Google Scholar 

  • Rau JV, Fosca M, Komlev VS, Fadeeva IV, Rossi Albertini V, Barinov SM (2010a) In situ time-resolved studies of octacalcium phosphate and dicalcium phosphate dihydrate in simulated body fluid: cooperative interactions and nanoapatite crystal growth. Cryst Growth Des 10:3824–3834

    Article  CAS  Google Scholar 

  • Rau JV, Generosi A, Komlev VS, Fosca M, Barinov SM, Albertini VR (2010b) Real-time monitoring of the mechanism of poorly crystalline apatite cement conversion in the presence of chitosan, simulated body fluid and human blood. Dalton Trans 39:11412–11423

    Article  CAS  Google Scholar 

  • Rauh F, Mizaikoff B (2011) Spectroscopic methods in gas hydrate research. Anal Bioanal Chem (submitted)

  • Sanloup C, Mao H-K, Hemley RJ (2002) High-pressure transformations in xenon hydrates. Proc Natl Acad Sci 99(1):25–28

    Article  CAS  Google Scholar 

  • Schleeger M, Wagner C, Vellekoop M, Lendl B, Heberle J (2009) Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. Anal Bioanal Chem 394:1869–1877

    Article  CAS  Google Scholar 

  • Strange RW, Feiters MC (2008) Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences. Curr Opin Struct Biol 18:609–616

    Article  CAS  Google Scholar 

  • Tanaka Y, Uozaki Y, Nozaki K, Ito K, Yamasaki K, Terauchi H, Takahashi I, Tahara K, Ishikawa T (2011) Time-resolved X-ray diffraction studies of laser-induced acoustic pulse generation in semiconductors using synchrotron radiation. J Phys Conf Ser 278:012018–012022

    Article  Google Scholar 

  • Yao T, Zhang X, Sun Z, Liu S, Huang Y, Xie Y, Wu C, Yuan X, Zhang W, Wu Z, Pan G, Hu F, Wu L, Liu Q, Wei S (2010) Understanding the nature of the kinetic process in a VO2 metal–insulator transition. Phys Rev Lett 105:226405–226408

    Article  Google Scholar 

  • Yi-Ang H, Gui-Min L, De-Ming L (2006) Magnet lattice design of the SSRF electron-beam transfer lines. Nucl Sci Tech 17:193–197

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Italian Ministry Foreign Affairs in the framework of the 12th Executive Programme of Scientific and Technological Cooperation between the Italian Republic and the People’s Republic of China. A special thanks is devoted to Manuel Sanchez del Rio, Qingxi Yuan, Lingyun Tang, Zeming Qi, Alessio Bocci and Paul Dumas for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Marcelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Marcelli, A., Hampai, D. et al. New opportunity to investigate physico-chemical phenomena: time-resolved X-ray and IR concurrent analysis. Rend. Fis. Acc. Lincei 22 (Suppl 1), 59–79 (2011). https://doi.org/10.1007/s12210-011-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-011-0145-1

Keywords

Navigation