Skip to main content

Advertisement

Log in

Concise Strategies to Enhance the High-Rate Performance of Li3VO4 Anodes: Cl Doping, Carbon Coating, and Spherical Architecture Design

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The safe operating voltage and low volume variation of Li3VO4 (LVO) make it an ideal anode material for lithium (Li)-ion batteries. However, the insufficient understanding of the inner storage mechanism hinders the design of LVO-based electrodes. Herein, we investigate, for the first time, the Li-ion storage activity in LVO via Cl doping. Moreover, N-doped C coating was simultaneously achieved in the Cl doping process, resulting in synergistically improved reaction kinetics. As a result, the as-prepared Cl-doped Li3VO4 coated with N-doped C (Cl-LVO@NC) electrodes deliver a discharge capacity of 884.1 mAh/g after 200 cycles at 0.2 A/g, which is the highest among all of the LVO-based electrodes. The Cl-LVO@NC electrodes also exhibit high-capacity retention of 331.1 mAh/g at 8.0 A/g and full capacity recovery after 5 periods of rate testing over 400 cycles. After 5000 cycles at 4.0 A/g, the discharge capacity can be maintained at 423.2 mAh/g, which is superior to most LVO-based electrodes. The Li-ion storage activity in LVO via Cl doping and significant improvement in the high-rate Li-ion storage reported in this work can be used as references for the design of advanced LVO-based electrodes for high-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hou S, Ji X, Gaskell K et al (2021) Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374(6564):172–178

    Article  Google Scholar 

  2. Kim H, Choi W, Yoon J et al (2020) Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem Rev 120(14):6934–6976

    Article  Google Scholar 

  3. Fan XM, Ou X, Zhao WG et al (2021) In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat Commun 12:5320

    Article  Google Scholar 

  4. Xu JY, Xu YF, Lai CL et al (2021) Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci China Chem 64(8):1267–1282

    Article  Google Scholar 

  5. Wang H, Hu P, Liu XT et al (2021) Sowing silver seeds within patterned ditches for dendrite-free lithium metal batteries. Adv Sci (Weinh) 8(14):e2100684

    Article  Google Scholar 

  6. Zhang Q, Guo YG (2020) The booming Li metal anodes. Acta Phys Chimica Sinica 37(1):2011061

    Article  Google Scholar 

  7. Ma LB, Cui J, Yao SS et al (2020) Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater 27:522–554

    Article  Google Scholar 

  8. Yin YM, Pei CY, Xiong FY et al (2021) Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties. J Mater Sci Technol 83:83–89

    Article  Google Scholar 

  9. Sun B, Zhang Q, Xu WL et al (2022) A gradient topology host for a dendrite-free lithium metal anode. Nano Energy 94:106937

    Article  Google Scholar 

  10. Zhang BP, Xia GL, Chen W et al (2018) Controlled-size hollow magnesium sulfide nanocrystals anchored on graphene for advanced lithium storage. ACS Nano 12(12):12741–12750

    Article  Google Scholar 

  11. Xiong FY, Lv F, Tang C et al (2020) In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage. Sci China Mater 63(10):1993–2001

    Article  Google Scholar 

  12. Liao CY, Zhang Q, Zhai TY et al (2017) Development and perspective of the insertion anode Li3VO4 for lithium-ion batteries. Energy Storage Mater 7:17–31

    Article  Google Scholar 

  13. Liu XQ, Li GS, Qian PX et al (2021) Carbon coated Li3VO4 microsphere: ultrafast solvothermal synthesis and excellent performance as lithium-ion battery anode. J Power Sour 493:229680

    Article  Google Scholar 

  14. Xu XN, Niu FE, Wang CS et al (2019) Li3VO4 nanoparticles in N-doped carbon with porous structure as an advanced anode material for lithium-ion batteries. Chem Eng J 370:606–613

    Article  Google Scholar 

  15. Wang K, Fu HY, Li ZY et al (2018) Enhancing the rate performance of a Li3VO4 anode through Cu doping. ChemElectroChem 5(3):478–482

    Article  Google Scholar 

  16. Zhou JF, Zhao BC, Song JY et al (2018) The enhanced cycling stability and rate capability of sodium-modified Li3VO4 anode material for lithium-ion batteries. Sol State Ion 322:30–38

    Article  Google Scholar 

  17. Lim E, Lim WG, Jo C et al (2017) Rational design of Li3VO4@carbon core-shell nanoparticles as Li-ion hybrid supercapacitor anode materials. J Mater Chem A 5(39):20969–20977

    Article  Google Scholar 

  18. Qin PC, Lv XD, Li C et al (2019) Morphology inheritance synthesis of carbon-coated Li3VO4 rods as anode for lithium-ion battery. Sci China Mater 62(8):1105–1114

    Article  Google Scholar 

  19. Qin RH, Shao GQ, Hou JX et al (2017) One-pot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries. Sci Bull 62(15):1081–1088

    Article  Google Scholar 

  20. Shen LF, Lv HF, Chen SQ et al (2017) Peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium -ion capacitors. Adv Mater 29(27):1700142

    Article  Google Scholar 

  21. Zhou JF, Zhao BC, Song JY et al (2017) Optimization of rate capability and cyclability performance in Li3VO4 anode material through Ca doping. Chemistry 23(64):16338–16345

    Article  Google Scholar 

  22. Li HQ, Liu XZ, Zhai TY et al (2013) Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv Energy Mater 3(4):428–432

    Article  Google Scholar 

  23. Yang G, Zhang BW, Feng JY et al (2018) Morphology controlled lithium storage in Li3VO4 anodes. J Mater Chem A 6(2):456–463

    Article  Google Scholar 

  24. Zhang CK, Liu CF, Nan XH et al (2015) Hollow-cuboid Li3VO4/C as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 8(1):680–688

    Article  Google Scholar 

  25. Liu J, Lu PJ, Liang SQ et al (2015) Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties. Nano Energy 12:709–724

    Article  Google Scholar 

  26. Zhou XS, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25(15):2152–2157

    Article  Google Scholar 

  27. Tran Huu H, Vu NH, Ha H et al (2021) Sub-micro droplet reactors for green synthesis of Li3VO4 anode materials in lithium ion batteries. Nat Commun 12:3081

    Article  Google Scholar 

  28. Yin YM, Xiong FY, Pei CY et al (2017) Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries. Nano Energy 41:452–459

    Article  Google Scholar 

  29. Dong YZ, Duan H, Park K et al (2017) Mo6+ doping in Li3VO4 anode for Li-ion batteries: significantly improve the reversible capacity and rate performance. ACS Appl Mater Interfaces 9(33):27688–27696

    Article  Google Scholar 

  30. Zhang CK, Wang K, Liu CF et al (2016) Effects of high surface energy on lithium-ion intercalation properties of Ni-doped Li3VO4. NPG Asia Mater 8(7):e287

    Article  Google Scholar 

  31. Xu MW, Xiao PH, Stauffer S et al (2014) Theoretical and experimental study of vanadium-based fluorophosphate cathodes for rechargeable batteries. Chem Mater 26(10):3089–3097

    Article  Google Scholar 

  32. Yang XS, Tang Y, Zhong YJ et al (2018) Synthesis and electrochemical performance of Li3V2(PO4)3/C by organic solvent replacement drying method. Ionics 24(2):385–391

    Article  Google Scholar 

  33. Petel BE, Meyer RL, Maiola ML et al (2020) Site-selective halogenation of polyoxovanadate clusters: atomically precise models for electronic effects of anion doping in VO2. J Am Chem Soc 142(2):1049–1056

    Article  Google Scholar 

  34. Ren QH, Wan JY, Gao YF (2014) Theoretical study of electronic properties of X-doped (X = F, Cl, Br, I) VO2 nanoparticles for thermochromic energy-saving foils. J Phys Chem A 118(46):11114–11118

    Article  Google Scholar 

  35. Mao JY, Niu DC, Jiang N et al (2020) Rational design of high nitrogen-doped and core-shell/mesoporous carbon nanospheres with high rate capability and cycling longevity for pseudocapacitive sodium storage. J Mater Chem A 8(19):9768–9775

    Article  Google Scholar 

  36. Zhao D, Cao MH (2015) Constructing highly graphitized carbon-wrapped Li3VO4 nanoparticles with hierarchically porous structure as a long life and high capacity anode for lithium-ion batteries. ACS Appl Mater Interfaces 7(45):25084–25093

    Article  Google Scholar 

  37. Li XM, Lau SP, Tang LB et al (2013) Multicolour light emission from chlorine-doped graphene quantum dots. J Mater Chem C 1(44):7308–7313

    Article  Google Scholar 

  38. Shi Y, Wang JZ, Chou SL et al (2013) Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett 13(10):4715–4720

    Article  Google Scholar 

  39. Zhang CK, Song HQ, Liu CF et al (2015) Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv Funct Mater 25(23):3497–3504

    Article  Google Scholar 

  40. Wu ZS, Ren WC, Gao LB et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417

    Article  Google Scholar 

  41. Singh S, Mitra S (2014) Improved electrochemical activity of nanostructured Li2FeSiO4/MWCNTs composite cathode. Electrochim Acta 123:378–386

    Article  Google Scholar 

  42. Yan ZQ, Sun ZH, Xia AQ et al (2020) Li3VO4/carbon sheets composites from cellulose as an anode material for high performance lithium-ion batteries. Ceram Int 46(2):2247–2254

    Article  Google Scholar 

  43. Li QD, Wei QL, Sheng JZ et al (2015) Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv Sci (Weinh) 2(12):1500284

    Article  Google Scholar 

  44. Gao P, Reddy MA, Mu XK et al (2016) VOCl as a cathode for rechargeable chloride ion batteries. Angew Chem Int Ed Engl 55(13):4285–4290

    Article  Google Scholar 

  45. Huang P, Cheng Z, Zeng L et al (2020) Enhancing nitrogen electroreduction to ammonia by doping chlorine on reduced graphene oxide. ACS Catal 10(24):14928–14935

    Article  Google Scholar 

  46. Zhang ZC, Gu YZ, Wang SK et al (2016) Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon 107:405–414

    Article  Google Scholar 

  47. Zhu DZ, Di YL, Chai ZJ et al (2020) High performance of Bi3+ and Cl co-doped Li3V2(PO4)3 as cathode for lithium-ion batteries. Surf Innov 8(5):270–278

    Article  Google Scholar 

  48. Ni SB, Zhang JC, Ma JJ et al (2015) Superior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries. J Mater Chem A 3:17951–17955

    Article  Google Scholar 

  49. Zhao L, Hu YS, Li H et al (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23(11):1385–1388

    Article  Google Scholar 

  50. Park M, Jeon IY, Ryu J et al (2016) Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy 26:233–240

    Article  Google Scholar 

  51. Zhang DM, Lu JL, Pei CY et al (2022) Electrochemical activation, sintering, and reconstruction in energy-storage technologies: origin, development, and prospects. Adv Energy Mater 12(19):2103689

    Article  Google Scholar 

  52. Xu J, Liang P, Zhang DM et al (2021) Reverse-design-strategy for C@Li3VO4 nanoflakes toward superb high-rate Li-ion storage. J Mater Chem A 9(32):17270–17280

    Article  Google Scholar 

  53. Li QD, Sheng JZ, Wei QL et al (2014) A unique hollow Li3VO4/carbon nanotube composite anode for high rate long-life lithium-ion batteries. Nanoscale 6(19):11072–11077

    Article  Google Scholar 

  54. Tang YC, Wei Y, Hollenkamp AF et al (2021) Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano-Micro Lett 13:178

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52101262), Distinguished Youth Foundation of Hubei Province (2019CFA084), Educational office of Hubei Province (Q20201201), and the 111 project (D20015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunyuan Pei or Shibing Ni.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2866 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xu, J., Zhang, D. et al. Concise Strategies to Enhance the High-Rate Performance of Li3VO4 Anodes: Cl Doping, Carbon Coating, and Spherical Architecture Design. Trans. Tianjin Univ. 29, 110–119 (2023). https://doi.org/10.1007/s12209-022-00348-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-022-00348-5

Keywords

Navigation