Skip to main content

Advertisement

Log in

Applications of Transition Metal (Fe, Co, Ni)-Based Metal–Organic Frameworks and their Derivatives in Batteries and Supercapacitors

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs), which are generally considered to be crystalline materials comprising metal centers and organic ligands, have attracted growing attention because of their controllable structures and high porosity. MOFs based on transition metals (Fe, Co, Ni) are highly efficient electrode materials for electrochemical energy storage. In this review, the characteristics of Fe-MOFs, Co-MOFs, Ni-MOFs, and their derivatives are summarized, and the relationships between the structures and performance are unveiled in depth. Additionally, their applications in lithium–ion batteries, lithium–sulfur batteries, and supercapacitors are discussed. This review sheds light on the development of MOFs and their derivatives to realize excellent electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [39]. Copyright © 2017 American Chemical Society. b Crystal structure of MOF (Ni–Me4bpz); Ni: red, Cl: green, N: blue, C: black. Reproduced with permission from Ref. [50]. Copyright © 2015 Elsevier. c N/S co-doped carbon enhance the properties of supercapacitors. Reproduced with permission from Ref. [65]. Copyright © 2013 The Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [84]. Copyright © 2012 American Chemical Society. d SEM image of FCNSC. e Schematic diagram of the FCNSC preparation. f Cycling performance and Coulombic efficiency at 1 A/g. Reproduced with permission from Ref. [105]. Copyright © 2017 The Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [119]. Copyright © 2014 The Royal Society of Chemistry. d Illustration of the fabrication of Ni@NC-rGO. e SEM of Ni@NC-rGO. f Cycling performance of a Ni@NC-rGO electrode at 1 A/g. Reproduced with permission from Ref. [67]. Copyright © 2019 The Royal Society of Chemistry

Fig. 5

Reproduced with permission from Ref. [124]. Copyright © 2018 Elsevier. c SEM image of Fe-soc@GO. d Charge/discharge curves of S/Fe-soc@rGO at 0.1 C. Reproduced with permission from Ref. [135]. Copyright © 2020 Elsevier. e SEM image of Co–N-GC composite materials. f Rate capability of S@Co–N-G. Reproduced with permission from Ref. [137]. Copyright © 2016 The Royal Society of Chemistry. g SEM image of Co, N-CNTs-CNS/CFC. h Rate performance of the Co, N-CNTs-CNS/CFC electrode. Reproduced with permission from Ref. [140] Copyright © 2019 WILEY–VCH

Fig. 6

Reproduced with permission from Ref. [148]. Copyright © 2017 Wiley–VCH. d SEM image of Co9S8/NS-C. e Synthetic process for Co9S8/NS-C. f Charge and discharge curves of Co9S8/NS-C. Reproduced with permission from Ref. [65]. Copyright © 2017 The Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [37]. Copyright © 2011 Elsevier. c TEM of a Co-MOF material. d Charge–discharge profiles of the Co-MOF electrode. Reproduced with permission from Ref. [152]. Copyright © 2016 Wiley–VCH

Fig. 8

Reproduced with permission from Ref. [160]. Copyright © 2018 The Royal Society of Chemistry. d TEM image of Ni/Co-MOF. e The synthesis process of Ni/Co-MOF and Ni-MOF. f CV curves of Ni/Co-MOF in 1 M LiOH solution. Reproduced with permission from Ref. [162]. Copyright © 2017 Springer

Fig. 9

Similar content being viewed by others

References

  1. Liu Z, Guan DB, Wei W et al (2015) Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524(7565):335–338

    Article  Google Scholar 

  2. Wei QL, Xiong FY, Tan SS et al (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 29(20):1602300

    Article  Google Scholar 

  3. Liu JL, Wang J, Xu CH et al (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5(1):1700322

    Article  Google Scholar 

  4. Pang H, Zhang YZ, Run Z et al (2015) Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. Nano Energy 17:339–347

    Article  Google Scholar 

  5. Wang H, Yang Y, Guo L (2017) Nature-inspired electrochemical energy-storage materials and devices. Adv Energy Mater 7(5):1601709

    Article  Google Scholar 

  6. Chen Z, Yuan Y, Zhou HH et al (2014) 3D Nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv Mater 26(2):339–345

    Article  Google Scholar 

  7. Chen Z, Augustyn V, Jia XL et al (2012) High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5):4319–4327

    Article  Google Scholar 

  8. Dubal DP, Ayyad O, Ruiz V et al (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790

    Article  Google Scholar 

  9. Zhang WL, Zhang F, Ming FW et al (2019) Sodium-ion battery anodes: status and future trends. EnergyChem 1(2):100012

    Article  Google Scholar 

  10. Xu XD, Cao RG, Jeong SY et al (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from mof template for high-rate lithium batteries. Nano Lett 12(9):4988–4991

    Article  Google Scholar 

  11. Shan XY, Zhong Y, Zhang LJ et al (2021) A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J Phys Chem C 125(35):19060–19080

    Article  Google Scholar 

  12. Bruce PG, Freunberger SA, Hardwick LJ et al (2012) LigO2 and LigS batteries with high energy storage. Nat Mater 11(1):19–29

    Article  Google Scholar 

  13. Wang JL, Yang J, Wan CR et al (2003) Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater 13(6):487–492

    Article  Google Scholar 

  14. Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  Google Scholar 

  15. Liu F, Song SY, Xue DF et al (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094

    Article  Google Scholar 

  16. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  Google Scholar 

  17. Yang XW, Cheng C, Wang YF et al (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145):534–537

    Article  Google Scholar 

  18. Zhao ZF, Xue ZX, Xiong QQ et al (2021) Titanium niobium oxides (TiNb2O7): design, fabrication and application in energy storage devices. Sustainable Materials and Technologies 30:e00357. https://doi.org/10.1016/j.susmat.2021.e00357

    Article  Google Scholar 

  19. Zhao Y, Song ZX, Li X et al (2016) Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2:35–62

    Article  Google Scholar 

  20. Xu GY, Nie P, Dou H et al (2017) Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today 20(4):191–209

    Article  Google Scholar 

  21. Guan BY, Yu XY, Wu HB et al (2017) Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv Mater 29(47):1703614

    Article  Google Scholar 

  22. Shrivastav V, Sundriyal S, Goel P et al (2019) Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: novel means for alternative energy storage. Coord Chem Rev 393:48–78

    Article  Google Scholar 

  23. Li SS, Gao YQ, Li N et al (2021) Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ Sci 14(4):1897–1927

    Article  Google Scholar 

  24. Hu YY, Han RX, Mei L et al (2021) Design principles of MOF-related materials for highly stable metal anodes in secondary metal-based batteries. Mater Today Energy 19:100608

    Article  Google Scholar 

  25. Fujie K, Kitagawa H (2016) Ionic liquid transported into metal-organic frameworks. Coord Chem Rev 307:382–390

    Article  Google Scholar 

  26. Lu X, Wu HP, Kong DJ et al (2020) Facilitating lithium-ion conduction in gel polymer electrolyte by metal-organic frameworks. ACS Mater Lett 2(11):1435–1441

    Article  Google Scholar 

  27. Sheberla D, Bachman JC, Elias JS et al (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224

    Article  Google Scholar 

  28. Xia W, Mahmood A, Zou RQ et al (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866

    Article  Google Scholar 

  29. Cao XH, Tan CL, Sindoro M et al (2017) Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 46(10):2660–2677

    Article  Google Scholar 

  30. Yang J, Zheng C, Xiong PX (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2(44):19005–19010

    Article  Google Scholar 

  31. Choi KM, Jeong HM, Park JH et al (2014) Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8(7):7451–7457

    Article  Google Scholar 

  32. Yang J, Xiong PX, Zheng C et al (2014) Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2(39):16640–16644

    Article  Google Scholar 

  33. Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5(11):9269–9290

    Article  Google Scholar 

  34. Halls JE, Jiang D, Burrows AD et al (2014) Electrochemistry within metal-organic frameworks. SPR. Electrochem 12(1):187–210

    Google Scholar 

  35. Li Q, Zheng SS, Xu YX et al (2018) Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J 333:505–518

    Article  Google Scholar 

  36. Zhu PY, Li XX, Yao H et al (2020) Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. J Energy Storage 31:101544

    Article  Google Scholar 

  37. Lee DY, Yoon SJ, Shrestha NK et al (2012) Unusual energy storage and charge retention in Co-based metal-organic-frameworks. Microporous Mesoporous Mater 153:163–165

    Article  Google Scholar 

  38. Qu C, Jiao Y, Zhao B et al (2016) Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26:66–73

    Article  Google Scholar 

  39. Park H, Siegel DJ (2017) Tuning the Adsorption of polysulfides in lithium-sulfur batteries with metal-organic frameworks. Chem Mater 29(11):4932–4939

    Article  Google Scholar 

  40. Zheng JM, Tian J, Wu DX et al (2014) Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14(5):2345–2352

    Article  Google Scholar 

  41. Yamada T, Shiraishi K, Kitagawa H et al (2017) Applicability of MIL-101(Fe) as a cathode of lithium ion batteries. Chem Commun 53(58):8215–8218

    Article  Google Scholar 

  42. Takaishi S, Hosoda M, Kajiwara T et al (2009) Electroconductive Porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg Chem 48(19):9048–9050

    Article  Google Scholar 

  43. Hu XS, Lou XB, Li C et al (2016) Facile synthesis of the basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties. RSC Adv 6(115):114483–114490

    Article  Google Scholar 

  44. Lou XB, Hu XS, Li C et al (2017) Room-temperature synthesis of a cobalt 2,3,5,6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries. New J Chem 41(4):1813–1819

    Article  Google Scholar 

  45. Gou L, Hao LM, Shi YX et al (2014) One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. J Solid State Chem 210(1):121–124

    Article  Google Scholar 

  46. Li C, Lou XB, Shen M et al (2016) High anodic performance of co 1,3,5-benzenetricarboxylate coordination polymers for li-ion battery. ACS Appl Mater Interfaces 8(24):15352–15360

    Article  Google Scholar 

  47. Maiti S, Pramanik A, Manju U et al (2016) Cu3(1,3,5-benzenetricarboxylate)2 metal-organic framework: a promising anode material for lithium-ion battery. Microporous Mesoporous Mater 226:353–359

    Article  Google Scholar 

  48. Dong CF, Xu LQ (2017) Cobalt- and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl Mater Interfaces 9(8):7160–7168

    Article  Google Scholar 

  49. Park KS, Ni Z, Cote AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191

    Article  Google Scholar 

  50. An T, Wang YH, Tang J et al (2015) A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. J Colloid Interface Sci 445:320–325

    Article  Google Scholar 

  51. Zhang JP, Horike S, Kitagawa S (2007) A flexible porous coordination polymer functionalized by unsaturated metal clusters. Angew Chemie Int Ed 46(6):889–892

    Article  Google Scholar 

  52. Cao W, Liu Y, Xu F et al (2020) In situ electrochemical synthesis of rod-like ni-mofs as battery-type electrode for high performance hybrid supercapacitor. J Electrochem Soc 167(5):050503

    Article  Google Scholar 

  53. Du PC, Dong YM, Liu C et al (2018) Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J Colloid Interface Sci 518:57–68

    Article  Google Scholar 

  54. Li ZG, Gadipelli S, Li HC et al (2020) Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat Energy 5(2):160–168

    Article  Google Scholar 

  55. Shan YY, Chen LY, Pang H et al (2021) Metal-Organic Framework-based hybrid frameworks Small Struct 2(2):2000078

    Google Scholar 

  56. Zhou HJ, Zheng MB, Pang H (2021) Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. Chem Eng J 416:127884

    Article  Google Scholar 

  57. Liang ZB, Zhao R, Qiu TJ et al (2019) Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1(1):100001

    Article  Google Scholar 

  58. Gan QM, Liu BJ, Zhao KM et al (2018) Flower-like NiCo2O4 from Ni-Co 1,3,5-benzenetricarboxylate metal organic framework tuned by graphene oxide for high-performance lithium storage. Electrochim Acta 279:152–160

    Article  Google Scholar 

  59. Zhu DQ, Zheng FC, Xu SH et al (2015) MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalt Trans 44(38):16946–16952

    Article  Google Scholar 

  60. Han X, Chen WM, Han XG et al (2016) Nitrogen-rich MOF derived porous Co3O4/N–C composites with superior performance in lithium-ion batteries. J Mater Chem A 4(34):13040–13045

    Article  Google Scholar 

  61. Sun Y, Huang FZ, Li SK et al (2017) Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries. Nano Res 10(10):3457–3467

    Article  Google Scholar 

  62. Shu JC, Cao WQ, Cao MS (2021) Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv Funct Mater 31(23):2100470

    Article  Google Scholar 

  63. Lu Y, Wang XL, Mai YJ et al (2012) Ni2P/graphene sheets as anode materials with enhanced electrochemical properties versus lithium. J Phys Chem C 116(42):22217–22225

    Article  Google Scholar 

  64. Yang DX, Chen YF, Su Z et al (2021) Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord Chem Rev 428:213619

    Article  Google Scholar 

  65. Zhang S, Li DH, Chen S et al (2017) Highly stable supercapacitors with MOF-derived Co9S8/carbon electrodes for high rate electrochemical energy storage. J Mater Chem A 5(24):12453–12461

    Article  Google Scholar 

  66. Wang ZF, Liu YS, Gao CW et al (2015) A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J Mater Chem A 3(41):20658–20663

    Article  Google Scholar 

  67. Cao YY, Lu YD, Ang EH et al (2019) MOF-derived uniform Ni nanoparticles encapsulated in carbon nanotubes grafted on rGO nanosheets as bifunctional materials for lithium-ion batteries and hydrogen evolution reaction. Nanoscale 11(32):15112–15119

    Article  Google Scholar 

  68. Chen YQ, Zheng L, Fu YY et al (2016) MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Adv 6(89):85917–85923

    Article  Google Scholar 

  69. He ZS, Wang K, Zhu SS et al (2018) MOF-derived hierarchical MnO-doped Fe3O4@C composite nanospheres with enhanced lithium storage. ACS Appl Mater 10:10974–10985

    Article  Google Scholar 

  70. Dang SS, Zhu QL, Xu Q (2017) Nanomaterials derived from metal-organic frameworks. Nat Rev Mater 3:17075

    Article  Google Scholar 

  71. Férey G, Millange F, Morcrette M et al (2007) Mixed-valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption properties. Angew Chemie Int Ed 46(18):3259–3263

    Article  Google Scholar 

  72. Fateeva A, Horcajada P, Devic T et al (2010) Synthesis, structure, characterization, and redox properties of the porous MIL-68(Fe) solid. Eur J Inorg Chem 68(24):3789–3794

    Article  Google Scholar 

  73. Shin J, Kim M, Cirera J et al (2015) MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. J Mater Chem A 3(8):4738–4744

    Article  Google Scholar 

  74. Xs Hu, Xb L, Li C et al (2016) Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties. RSC Adv 6(115):114483–114490

    Article  Google Scholar 

  75. Liu J, Kopold P, vanAken PA et al (2015) Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chemie Int Ed 54(33):9632–9636

    Article  Google Scholar 

  76. Zhu GY, Wang L, Lin HN et al (2018) Walnut-Like multicore–shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv Funct Mater 28(18):1800003

    Article  Google Scholar 

  77. Zou YH, Zhang W, Chen N et al (2019) Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity. ACS Nano 13(2):2062–2071

    Google Scholar 

  78. Xu SM, Hessel CM, Ren H et al (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7(2):632–637

    Article  Google Scholar 

  79. Hu JT, Zheng JX, Tian LL et al (2015) A core-shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries. Chem Commun 51(37):7855–7858

    Article  Google Scholar 

  80. Wu FF, Zhang SS, Xi BJ et al (2018) Unusual formation of CoO@C “dandelions” derived from 2D kagóme mols for efficient lithium storage. Adv Energy Mater 8(13):1703242

    Article  Google Scholar 

  81. Wang YY, Kang WP, Cao DW et al (2018) A yolk-shelled Co9S8/MoS2-CN nanocomposite derived from a metal-organic framework as a high performance anode for sodium ion batteries. J Mater Chem A 6(11):4776–4782

    Article  Google Scholar 

  82. Cai YS, Fang GZ, Zhou J et al (2018) Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res 11(1):449–463

    Article  Google Scholar 

  83. Lee Y, Park G-H, Choi B et al (2020) 2D Fe2O3 nanosheets with bi-continuous pores inherited from Fe-MOF precursors: an advanced anode material for li-ion half/full batteries, Semicond Sci. Technol 35:03LT01

  84. Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous α Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991

    Article  Google Scholar 

  85. Wang ZY, Luan DY, Madhavi S et al (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5(1):5252–5256

    Article  Google Scholar 

  86. Zhu XJ, Zhu YW, Murali S et al (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338

    Article  Google Scholar 

  87. Li MC, Wang WX, Yang MY et al (2015) Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries. RSC Adv 5(10):7356–7362

    Article  Google Scholar 

  88. He ZS, Wang K, Zhu SS et al (2018) MOF-derived hierarchical MnO-doped Fe3O4@C composite nanospheres with enhanced lithium storage. ACS Appl Mater Interfaces 10(13):10974–10985

    Article  Google Scholar 

  89. Hu L, Wang Q, Zhu X et al (2021) Novel Fe4-based metal-organic cluster-derived iron oxides/S, N dual-doped carbon hybrids for high-performance lithium storage. Nanoscale 13(2):716–723

    Article  Google Scholar 

  90. Hu X, Hu HS, Li CP et al (2016) Cobalt-based metal organic framework with superior lithium anodic performance. J Solid State Chem 242:71–76

    Article  Google Scholar 

  91. Li C, Chen TQ, Xu WJ et al (2015) Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J Mater Chem A 3(10):5585–5591

    Article  Google Scholar 

  92. Shui JL, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129

    Article  Google Scholar 

  93. Gao SY, Wei XJ, Fan H et al (2015) Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy 13:518–526

    Article  Google Scholar 

  94. Jiao Y, Zheng Y, Jaroniec M et al (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086

    Article  Google Scholar 

  95. Zhang P, Sun F, Xiang ZH et al (2014) ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ Sci 7(1):442–450

    Article  Google Scholar 

  96. Gao F, Zhao GL, Yang SZ (2014) Catalytic reactions on the open-edge sites of nitrogen-doped carbon nanotubes as cathode catalyst for hydrogen fuel cells. ACS Catal 4(5):1267–1273

    Article  Google Scholar 

  97. Higgins DC, Hoque A, Hassan F et al (2014) Oxygen Reduction on Graphene−Carbon Nanotube Composites. ACS Catal 4:2734–2740

    Article  Google Scholar 

  98. Gong X, Liu SS, Ouyang CY et al (2015) Nitrogen- and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction. ACS Catal 5(2):920–927

    Article  Google Scholar 

  99. Favaro M, Ferrighi L, Fazio G et al (2015) Single and multiple doping in graphene quantum dots: unraveling the origin of selectivity in the oxygen reduction reaction. ACS Catal 5(1):129–144

    Article  Google Scholar 

  100. Domínguez C, Pérez-Alonso FJ, Al-Thabaiti SA et al (2015) Effect of N and S co-doping of multiwalled carbon nanotubes for the oxygen reduction. Electrochim Acta 157:158–165

    Article  Google Scholar 

  101. Li WQ, Yang DG, Chen HB et al (2015) Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium. Electrochim Acta 165:191–197

    Article  Google Scholar 

  102. Han X, Chen WM, Han XG et al (2016) Nitrogen-rich MOF derived porous Co3O4/N-C composites with superior performance in lithium-ion batteries. J Mater Chem A 4(34):13040–13045

    Article  Google Scholar 

  103. Qu KG, Zheng Y, Dai S et al (2016) Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19:373–381

    Article  Google Scholar 

  104. Pang Q, Tang JT, Huang H et al (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv Mater 27(39):6021–6028

    Article  Google Scholar 

  105. Wang F, Zhuo HY, Han XG et al (2017) Foam-like CoO@N, S-codoped carbon composites derived from a well-designed N, S-rich Co-MOF for lithium-ion batteries. J Mater Chem A 5(44):22964–22969

    Article  Google Scholar 

  106. Zhang GQ, Yu L, Wu HB et al (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24(34):4609–4613

    Article  Google Scholar 

  107. Gao GX, Wu HB, Ding SJ et al (2015) Preparation of carbon-coated NiCo2O4@SnO2 hetero-nanostructures and their reversible lithium storage properties. Small 11(4):432–436

    Article  Google Scholar 

  108. Yu J, Chen SM, Hao WJ et al (2016) Fibrous-root-inspired design and lithium storage applications of a Co-Zn binary synergistic nanoarray system. ACS Nano 10(2):2500–2508

    Article  Google Scholar 

  109. Xu XH, Cao KZ, Wang YJ et al (2016) 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J Mater Chem A 4(16):6042–6047

    Article  Google Scholar 

  110. Zhang Y, Niu YB, Liu T et al (2015) A nickel-based metal-organic framework: a novel optimized anode material for Li-ion batteries. Mater Lett 161:712–715

    Article  Google Scholar 

  111. Kavitha T, Yuvaraj H (2011) A facile approach to the synthesis of high-quality NiO nanorods: Electrochemical and antibacterial properties. J Mater Chem 21(39):15686–15691

    Article  Google Scholar 

  112. Yang WF, Cheng GH, Dong CQ et al (2014) NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J Mater Chem A 2(47):20022–20029

    Article  Google Scholar 

  113. Needham SA, Wang GX, Liu HK (2006) Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J Power Sources 159:254–257

    Article  Google Scholar 

  114. Liu LX, Guo YY, Wang YP et al (2013) Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochim Acta 114:42–47

    Article  Google Scholar 

  115. Aravindan V, Suresh Kumar P, Sundaramurthy J et al (2013) Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J Power Sources 227:284–290

    Article  Google Scholar 

  116. Qiu MC, Yang LW, Qi X et al (2010) Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. ACS Appl Mater Interfaces 2(12):3614–3618

    Article  Google Scholar 

  117. Wang B, Cheng JL, Wu YP et al (2012) Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem commun 23(1):5–8

    Google Scholar 

  118. Pang HC, Guan BQ, Sun WW et al (2016) Metal-organic-frameworks derivation of mesoporous Nio nanorod for high-performance lithium ion batteries. Electrochim Acta 213:351–357

    Article  Google Scholar 

  119. Wang ZQ, Li X, Yang Y et al (2014) Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal-organic framework method for lithium-ion cathode. J Mater Chem A 2(21):7912–7916

    Article  Google Scholar 

  120. Lu Y, Tu JP, Gu CD et al (2011) In situ growth and electrochemical characterization versus lithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy. J Mater Chem 21(44):17988–17997

    Article  Google Scholar 

  121. Lu Y, Tu JP, Xiong QQ et al (2012) Carbon-decorated single-crystalline Ni2P nanotubes derived from Ni nanowire templates: a high-performance material for Li-ion batteries. Chem - A Eur J 18(19):6031–6038

    Article  Google Scholar 

  122. Li GH, Yang H, Li FC et al (2016) Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal-organic framework. J Mater Chem A 4(24):9593–9599

    Article  Google Scholar 

  123. Capková D, Almáši M, Kazda T et al (2020) Metal-organic framework MIL-101(Fe)–NH2 as an efficient host for sulphur storage in long-cycle Li–S batteries. Electrochim Acta 354:136640

    Article  Google Scholar 

  124. Fan LS, Wu HX, Wu X et al (2019) Fe-MOF derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery. Electrochim Acta 295:444–451

    Article  Google Scholar 

  125. Huang C, Zhou Y, Shu HB et al (2020) Synergetic restriction to polysulfides by hollow FePO4 nanospheres wrapped by reduced graphene oxide for lithium–sulfur battery. Electrochim Acta 329:135135

    Article  Google Scholar 

  126. Yan XL, Lin L, Chen QL et al (2021) Multifunctional roles of carbon-based hosts for Li-metal anodes: A review. Carbon Energy 3(2):303–329

    Article  Google Scholar 

  127. Huang L, Shen SH, Zhong Y et al (2022) Multifunctional hyphae carbon powering lithium–sulfur batteries. Adv Mater 34(6):2107415

    Article  Google Scholar 

  128. Wang CH, Li YH, Cao F et al (2022) Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium–sulfur batteries. ACS Appl Mater Interfaces 14(8):10457–10466

    Article  Google Scholar 

  129. Zhu JX, Zhu T, Zhou XZ et al (2011) Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3(3):1084–1089

    Article  MathSciNet  Google Scholar 

  130. Zhang H, Lv X, Li Y et al (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4(2010):380–386

    Article  Google Scholar 

  131. Benvidi A, Tezerjani MD, Jahanbani S et al (2016) Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs. Talanta 147:621–627

    Article  Google Scholar 

  132. Niu ZQ, Chen J, Hng HH et al (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24(30):4144–4150

    Article  Google Scholar 

  133. Chen SH, Ma WJ, Cheng YH et al (2015) Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 15:642–653

    Article  Google Scholar 

  134. Wang ZY, Zhang Y, Liu S et al (2016) Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sensors Actuators, B Chem 222(2):893–903

    Article  Google Scholar 

  135. Yao J, Zhang M, Han GD et al (2020) Reduced graphene oxide coated Fe-soc as a cathode material for high-performance lithium-sulfur batteries. Ceram Int 46(15):24155–24161

    Article  Google Scholar 

  136. Deng NP, Wang LY, Feng Y et al (2020) Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chem Eng J 388:124241

    Article  Google Scholar 

  137. He JR, Lv WQ, Chen YF et al (2018) Direct impregnation of SeS2 into a MOF-derived 3D nanoporous Co-N-C architecture towards superior rechargeable lithium batteries. J Mater Chem A 6(22):10466–10473

    Article  Google Scholar 

  138. Li YJ, Fan JM, Zheng MS et al (2016) A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ Sci 9(6):1998–2004

    Article  Google Scholar 

  139. Song CL, Li GH, Yang Y et al (2019) 3D Catalytic MOF-based Nanocomposite as Separator Coatings for High-Performance Li-S Battery. Chem Eng J 381:122701

    Article  Google Scholar 

  140. Fang DL, Wang YL, Qian C et al (2019) Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium-sulfur batteries. Adv Funct Mater 29(19):1900875

    Article  Google Scholar 

  141. Li ZQ, Li CX, Ge XL et al (2016) Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23:15–26

    Article  Google Scholar 

  142. Kang HJ, Lee TG, Kim HJ et al (2021) Thick free-standing electrode based on carbon–carbon nitride microspheres with large mesopores for high-energy-density lithium–sulfur batteries. Carbon Energy 3(3):410–423

    Article  Google Scholar 

  143. Inamdar AI, Kaisar N, Kamal S et al (2021) Design of a metal-organic framework-derived Co9S8/s material for achieving high durability and high performance of lithium–sulfur batteries. ChemElectroChem 8(16):3040–3048

    Article  Google Scholar 

  144. Zhou ZF, Li Y, Fang TT et al (2019) MOF-derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium–sulfur batteries. Nanomaterials 9(11):1574

    Article  Google Scholar 

  145. Cai D, Lu MJ, Li L et al (2019) A highly conductive mof of graphene analogue Ni3(HITP)2 as a sulfur host for high-performance lithium–sulfur batteries. Small 15(44):1–11

    Google Scholar 

  146. Peng Y, Li YS, Ban YJ et al (2014) Metal- organic framework nanosheets as building blocks for molecular sieving membranes. Science 346(6215):1356–1359

    Article  Google Scholar 

  147. Shan Y, Li Y, Pang H (2020) Applications of Tin Sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv Funct Mater 30(23):2001298

    Article  Google Scholar 

  148. Guo M, Balamurugan J, Li X et al (2017) Hierarchical 3D Cobalt-doped Fe3O4 nanospheres@NG hybrid as an advanced anode material for high-performance asymmetric supercapacitors. Small 13(33):1701275

    Article  Google Scholar 

  149. Zhou ZY, Zhang QC, Sun J et al (2018) Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 12(9):9333–9341

    Article  Google Scholar 

  150. Mahmood A, Zou RQ, Wang QF et al (2016) Nanostructured electrode materials derived from metal-organic framework xerogels for high-energy-density asymmetric supercapacitor. ACS Appl Mater Interfaces 8(3):2148–2157

    Article  Google Scholar 

  151. Cheng Y, Xiao X, Pan KM et al (2020) Development and application of self-healing materials in smart batteries and supercapacitors. Chem Eng J 380:122565

    Article  Google Scholar 

  152. Yang J, Ma ZH, Gao WX et al (2017) Layered structural Co-Based MOF with conductive network frames as a new supercapacitor electrode. Chem - A Eur J 23(3):631–636

    Article  Google Scholar 

  153. Meng FL, Fang ZG, Li ZX et al (2013) Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J Mater Chem A 1(24):7235–7241

    Article  Google Scholar 

  154. Zhang C, Xiao J, Lv XL et al (2016) Hierarchically porous Co3O4/C nanowire arrays derived from a metal-organic framework for high performance supercapacitors and the oxygen evolution reaction. J Mater Chem A 4(42):16516–16523

    Article  Google Scholar 

  155. Feng DW, Lei T, Lukatskaya MR et al (2018) Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy 3(1):30–36

    Article  Google Scholar 

  156. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  Google Scholar 

  157. Yu ZN, Tetard L, Zhai L et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730

    Article  Google Scholar 

  158. Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7(1):12647

    Article  Google Scholar 

  159. Zhou YJ, Mao ZM, Wang W et al (2016) In-situ fabrication of graphene oxide hybrid ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl Mater Interfaces 8(42):28904–28916

    Article  Google Scholar 

  160. Qu C, Zhang L, Meng W et al (2018) MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. J Mater Chem A 6(9):4003–4012

    Article  Google Scholar 

  161. Li GC, Liu PF, Liu R et al (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalt Trans 45(34):13311–13316

    Article  Google Scholar 

  162. Xia HC, Zhang JN, Yang Z et al (2017) 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett 9(4):43

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. NSFC-U1904215), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), and the Natural Science Foundation of Jiangsu Province (No. BK20200044). Program for Young Changjiang Scholars of the Ministry of Education, China (No. Q2018270). We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang.

Ethics declarations

Conflict of Interest

The authors declare there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Shan, Y., Sun, F. et al. Applications of Transition Metal (Fe, Co, Ni)-Based Metal–Organic Frameworks and their Derivatives in Batteries and Supercapacitors. Trans. Tianjin Univ. 28, 446–468 (2022). https://doi.org/10.1007/s12209-022-00340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-022-00340-z

Keywords

Navigation