Skip to main content

Advertisement

Log in

Multi-metal–Organic Frameworks and Their Derived Materials for Li/Na-Ion Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Lithium-ion and sodium-ion batteries are widely regarded as green energy storage power devices to support the development of modern electronic and information technology systems. Therefore, the design of advanced cathode and anode materials with higher energy and power densities is crucial to satisfy the increasing demand for next-generation high-performance batteries. To address this, researchers have explored metal–organic frameworks that possess extremely large surface areas, uniform ordered pores and controllable functional groups for application in the fields of energy storage, adsorption, catalysis, separation, etc. In addition, multi-metal–organic frameworks (MMOFs) and their derivatives have also been reported to provide better tunability to allow for the control of size, porosity, structure and composition, resulting in enhanced electronic and ion conductivities and richer redox chemistries at desirable potentials. Moreover, the synergistic effects between two or more metal components in MMOFs and their derivatives can accommodate large volume expansions during stepwise Li-/Na-ion insertion and extraction processes to allow for the improvement of structural stability in electrodes as well as enhanced cyclability. Based on all of this, this review will discuss and summarize the most recent progress in the synthesis, electrochemical performance and design of MMOFs and their derivatives. In addition, future trends and prospects in the development of MMOF-based materials and their application as high-performance Li/Na storage electrode materials are presented.

Graphic Abstract

Recent advances in multi-metal–organic frameworks and their derived materials for applications in lithium-/sodium-ion batteries are summarized and critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2

Reprinted with permissions from Ref. [138], copyright 2016, Wiley-VCH

Fig. 3

Reprinted with permissions from Ref. [145], copyright 2015, American Chemical Society

Fig. 4

Reprinted with permissions from Ref. [181], copyright 2016, Wiley-VCH

Fig. 5

Reprinted with permissions from Ref. [190], copyright 2016, American Chemical Society

Fig. 6

Reprinted with permissions from Ref. [192], copyright 2017, Wiley-VCH

Similar content being viewed by others

References

  1. Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  2. Yu, L., Hu, H., Wu, H.B., et al.: Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29, 1604563 (2017). https://doi.org/10.1002/adma.201604563

    Article  CAS  Google Scholar 

  3. Ungurean, L., Cârstoiu, G., Micea, M.V., et al.: Battery state of health estimation: a structured review of models, methods and commercial devices. Int. J. Energy Res. 41, 151–181 (2017). https://doi.org/10.1002/er.3598

    Article  Google Scholar 

  4. Chen, G., Yan, L.T., Luo, H.M., et al.: Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 28, 7580–7602 (2016). https://doi.org/10.1002/adma.201600164

    Article  PubMed  CAS  Google Scholar 

  5. Liu, X., Huang, J.Q., Zhang, Q., et al.: Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759

    Article  CAS  Google Scholar 

  6. Li, Y.S., Shi, J.L.: Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv. Mater. 26, 3176–3205 (2014). https://doi.org/10.1002/adma.201305319

    Article  PubMed  CAS  Google Scholar 

  7. Jokar, A., Rajabloo, B., Désilets, M., et al.: Review of simplified pseudo-two-dimensional models of lithium-ion batteries. J. Power Sources 327, 44–55 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.036

    Article  CAS  Google Scholar 

  8. Zheng, J.X., Lu, J., Amine, K., et al.: Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy 33, 497–507 (2017). https://doi.org/10.1016/j.nanoen.2017.02.011

    Article  CAS  Google Scholar 

  9. Hwang, J.Y., Myung, S.T., Sun, Y.K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g

    Article  PubMed  CAS  Google Scholar 

  10. Luo, W., Shen, F., Bommier, C., et al.: Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49, 231–240 (2016). https://doi.org/10.1021/acs.accounts.5b00482

    Article  PubMed  CAS  Google Scholar 

  11. Liu, Y.C., Liu, X.B., Wang, T.S., et al.: Research and application progress on key materials for sodium-ion batteries. Sustain. Energy Fuels 1, 986–1006 (2017). https://doi.org/10.1039/c7se00120g

    Article  CAS  Google Scholar 

  12. Hou, H., Qiu, X., Wei, W., et al.: Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7, 1602898 (2017). https://doi.org/10.1002/aenm.201602898

    Article  CAS  Google Scholar 

  13. Zhao, C.L., Lu, Y.X., Li, Y.M., et al.: Novel methods for sodium-ion battery materials. Small Methods 1, 1600063 (2017). https://doi.org/10.1002/smtd.201600063

    Article  CAS  Google Scholar 

  14. Wang, J., He, X., Paillard, E., et al.: Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv. Energy Mater. 6, 1600906 (2016). https://doi.org/10.1002/aenm.201600906

    Article  CAS  Google Scholar 

  15. Peng, L.L., Zhu, Y., Chen, D.H., et al.: Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 6, 1600025 (2016). https://doi.org/10.1002/aenm.201600025

    Article  CAS  Google Scholar 

  16. Sheng, T., Xu, Y.F., Jiang, Y.X., et al.: Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc. Chem. Res. 49, 2569–2577 (2016). https://doi.org/10.1021/acs.accounts.6b00485

    Article  PubMed  CAS  Google Scholar 

  17. Hou, P.Y., Zhang, H.Z., Zi, Z.Y., et al.: Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J. Mater. Chem. A 5, 4254–4279 (2017). https://doi.org/10.1039/c6ta10297b

    Article  CAS  Google Scholar 

  18. Chen, P., Wu, F.D., Wang, Y.: Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries. Chemsuschem 7, 1407–1414 (2014). https://doi.org/10.1002/cssc.201301198

    Article  PubMed  CAS  Google Scholar 

  19. Rahman, M.A., Song, G.S., Bhatt, A.I., et al.: Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 26, 647–678 (2016). https://doi.org/10.1002/adfm.201502959

    Article  CAS  Google Scholar 

  20. Xu, J., Lin, F., Doeff, M.M., et al.: A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 5, 874–901 (2017). https://doi.org/10.1039/c6ta07991a

    Article  CAS  Google Scholar 

  21. Yu, S.H., Lee, S.H., Lee, D.J., et al.: Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12, 2146–2172 (2016). https://doi.org/10.1002/smll.201502299

    Article  PubMed  CAS  Google Scholar 

  22. Yuan, C.Z., Wu, H.B., Xie, Y., et al.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014). https://doi.org/10.1002/anie.201303971

    Article  CAS  Google Scholar 

  23. Guo, L., Wang, Y.: New Cr2Mo3O12-based anodes: morphology tuning and Li-storage properties. J. Mater. Chem. A 3, 15030–15038 (2015). https://doi.org/10.1039/c5ta03256c

    Article  CAS  Google Scholar 

  24. Guan, B.Q., Sun, W.W., Wang, Y.: Carbon-coated MnMoO4 nanorod for high-performance lithium-ion batteries. Electrochim. Acta 190, 354–359 (2016). https://doi.org/10.1016/j.electacta.2016.01.008

    Article  CAS  Google Scholar 

  25. Guo, L., Wang, Y.: Standing carbon-coated molybdenum dioxide nanosheets on graphene: morphology evolution and lithium ion storage properties. J. Mater. Chem. A 3, 4706–4715 (2015). https://doi.org/10.1039/c4ta05520a

    Article  CAS  Google Scholar 

  26. Billaud, J., Clément, R.J., Armstrong, A.R., et al.: β-NaMnO2: a high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 136, 17243–17248 (2014). https://doi.org/10.1021/ja509704t

    Article  PubMed  CAS  Google Scholar 

  27. Xu, X.D., Liu, W., Kim, Y., et al.: Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014). https://doi.org/10.1016/j.nantod.2014.09.005

    Article  CAS  Google Scholar 

  28. Jin, F.Y., Wang, Y.: Topotactical conversion of carbon coated Fe-based electrodes on graphene aerogels for lithium ion storage. J. Mater. Chem. A 3, 14741–14749 (2015). https://doi.org/10.1039/c5ta03605d

    Article  CAS  Google Scholar 

  29. Lei, Z.D., Zhan, J., Tang, L., et al.: Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 8, 1703482 (2018). https://doi.org/10.1002/aenm.201703482

    Article  CAS  Google Scholar 

  30. Yu, X.Y., Yu, L., Shen, L.F., et al.: General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 24, 7440–7446 (2014). https://doi.org/10.1002/adfm.201402560

    Article  CAS  Google Scholar 

  31. Zielinski, M.S., Choi, J.W., La Grange, T., et al.: Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159–2167 (2016). https://doi.org/10.1021/acs.nanolett.5b03901

    Article  PubMed  CAS  Google Scholar 

  32. Shen, L.F., Yu, L., Wu, H.B., et al.: Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015). https://doi.org/10.1038/ncomms7694

    Article  PubMed  CAS  Google Scholar 

  33. Qin, J., Zhao, N.Q., Shi, C.S., et al.: Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 5, 10946–10956 (2017). https://doi.org/10.1039/c7ta01936j

    Article  CAS  Google Scholar 

  34. Xiao, S., Liu, S.H., Zhang, J.Q., et al.: Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium-sulfur batteries. J. Power Sources 293, 119–126 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.048

    Article  CAS  Google Scholar 

  35. Jin, F.Y., Xiao, S., Lu, L.J., et al.: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium–sulfur batteries. Nano Lett. 16, 440–447 (2016). https://doi.org/10.1021/acs.nanolett.5b04105

    Article  PubMed  CAS  Google Scholar 

  36. Zhao, Y., Wang, L.P., Sougrati, M.T., et al.: A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7, 1601424 (2017). https://doi.org/10.1002/aenm.201601424

    Article  CAS  Google Scholar 

  37. Peng, S.J., Li, L.L., Lee, J.K.Y., et al.: Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22, 361–395 (2016). https://doi.org/10.1016/j.nanoen.2016.02.001

    Article  CAS  Google Scholar 

  38. He, Y.Z., Han, X.J., Du, Y.C., et al.: Heteroatom-doped carbon nanostructures derived from conjugated polymers for energy applications. Polymers 8, 366 (2016). https://doi.org/10.3390/polym8100366

    Article  PubMed Central  CAS  Google Scholar 

  39. Sun, W.W., Wang, Y.: Graphene-based nanocomposite anodes for lithium-ion batteries. Nanoscale 6, 11528–11552 (2014). https://doi.org/10.1039/c4nr02999b

    Article  PubMed  CAS  Google Scholar 

  40. Roberts, A.D., Li, X., Zhang, H.F.: Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43, 4341–4356 (2014). https://doi.org/10.1039/c4cs00071d

    Article  PubMed  CAS  Google Scholar 

  41. Keppeler, M., Shen, N., Nageswaran, S., et al.: Synthesis of α-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. J. Mater. Chem. A 4, 18223–18239 (2016). https://doi.org/10.1039/c6ta08456g

    Article  CAS  Google Scholar 

  42. Kim, H., Lah, M.S.: Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Trans. 46, 6146–6158 (2017). https://doi.org/10.1039/c7dt00389g

    Article  PubMed  CAS  Google Scholar 

  43. Sun, D.R., Ye, L., Sun, F.X., et al.: From mixed-metal MOFs to carbon-coated core-shell metal alloy@metal oxide solid solutions: transformation of Co/Ni-MOF-74 to CoxNi1−x@CoYNi1–YO@C for the oxygen evolution reaction. Inorg. Chem. 56, 5203–5209 (2017). https://doi.org/10.1021/acs.inorgchem.7b00333

    Article  PubMed  CAS  Google Scholar 

  44. Kaneti, Y.V., Tang, J., Salunkhe, R.R., et al.: Nanoarchitectured design of porous materials and nanocomposites from metal–organic frameworks. Adv. Mater. 29, 1604898 (2017). https://doi.org/10.1002/adma.201604898

    Article  CAS  Google Scholar 

  45. Yang, X.Y., Chen, L.H., Li, Y., et al.: Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017). https://doi.org/10.1039/c6cs00829a

    Article  PubMed  CAS  Google Scholar 

  46. Li, B., Wen, H.M., Zhou, W., et al.: Porous metal–organic frameworks: promising materials for methane storage. Chem 1, 557–580 (2016). https://doi.org/10.1016/j.chempr.2016.09.009

    Article  CAS  Google Scholar 

  47. Pei, X.K., Chen, Y.F., Li, S.Q., et al.: Metal–organic frameworks derived porous carbons: syntheses, porosity and gas sorption properties. Chin. J. Chem. 34, 157–174 (2016). https://doi.org/10.1002/cjoc.201500760

    Article  CAS  Google Scholar 

  48. Yaghi, O.M., Li, H.L.: Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995). https://doi.org/10.1021/ja00146a033

    Article  CAS  Google Scholar 

  49. Howarth, A.J., Liu, Y.Y., Li, P., et al.: Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18

    Article  CAS  Google Scholar 

  50. Qin, J.S., Yuan, S., Wang, Q., et al.: Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J. Mater. Chem. A 5, 4280–4291 (2017). https://doi.org/10.1039/c6ta10281f

    Article  CAS  Google Scholar 

  51. Nath, I., Chakraborty, J., Verpoort, F.: Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem. Soc. Rev. 45, 4127–4170 (2016). https://doi.org/10.1039/c6cs00047a

    Article  PubMed  CAS  Google Scholar 

  52. Ahmed, I., Jhung, S.H.: Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions. Chem. Eng. J. 310, 197–215 (2017). https://doi.org/10.1016/j.cej.2016.10.115

    Article  CAS  Google Scholar 

  53. Andirova, D., Cogswell, C.F., Yu, L., et al.: Effect of the structural constituents of metal organic frameworks on carbon dioxide capture. Micropor. Mesopor. Mater. 219, 276–305 (2016). https://doi.org/10.1016/j.micromeso.2015.07.029

    Article  CAS  Google Scholar 

  54. Dhakshinamoorthy, A., Asiri, A.M., García, H.: Metal–organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew. Chem. Int. Ed. 55, 5414–5445 (2016). https://doi.org/10.1002/anie.201505581

    Article  CAS  Google Scholar 

  55. Kreno, L.E., Leong, K., Farha, O.K., et al.: Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t

    Article  PubMed  CAS  Google Scholar 

  56. Fu, Y.H., Xu, L., Shen, H.M., et al.: Tunable catalytic properties of multi-metal–organic frameworks for aerobic styrene oxidation. Chem. Eng. J. 299, 135–141 (2016). https://doi.org/10.1016/j.cej.2016.04.102

    Article  CAS  Google Scholar 

  57. Furukawa, H., Cordova, K.E., O’Keeffe, M., et al.: The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444

    Article  CAS  Google Scholar 

  58. Kumar, P., Kim, K.H., Kim, Y.H., et al.: A review of metal organic resins for environmental applications. J. Hazard. Mater. 320, 234–240 (2016). https://doi.org/10.1016/j.jhazmat.2016.08.037

    Article  PubMed  CAS  Google Scholar 

  59. Ahmed, I., Jhung, S.H.: Adsorptive desulfurization and denitrogenation using metal–organic frameworks. J. Hazard. Mater. 301, 259–276 (2016). https://doi.org/10.1016/j.jhazmat.2015.08.045

    Article  PubMed  CAS  Google Scholar 

  60. Sumida, K., Rogow, D.L., Mason, J.A., et al.: Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012). https://doi.org/10.1021/cr2003272

    Article  PubMed  CAS  Google Scholar 

  61. Wales, D.J., Grand, J., Ting, V.P., et al.: Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 44, 4290–4321 (2015). https://doi.org/10.1039/c5cs00040h

    Article  PubMed  CAS  Google Scholar 

  62. Chen, B.L., Xiang, S.C., Qian, G.D.: Metal–organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010). https://doi.org/10.1021/ar100023y

    Article  PubMed  CAS  Google Scholar 

  63. Barea, E., Montoro, C., Navarro, J.A.R.: Toxic gas removal-metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43, 5419–5430 (2014). https://doi.org/10.1039/c3cs60475f

    Article  PubMed  CAS  Google Scholar 

  64. Lin, Y.C., Kong, C., Zhang, Q.J., et al.: Metal–organic frameworks for carbon dioxide capture and methane storage. Adv. Energy Mater. 7, 1601296 (2017). https://doi.org/10.1002/aenm.201601296

    Article  CAS  Google Scholar 

  65. Denny, M.S., Moreton, J.C., Benz, L., et al.: Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016). https://doi.org/10.1038/natrevmats.2016.78

    Article  CAS  Google Scholar 

  66. Kumar, P., Pournara, A., Kim, K.H., et al.: Metal–organic frameworks: challenges and opportunities for ion-exchange/sorption applications. Prog. Mater. Sci. 86, 25–74 (2017). https://doi.org/10.1016/j.pmatsci.2017.01.002

    Article  CAS  Google Scholar 

  67. Song, Z.X., Cheng, N.C., Lushington, A., et al.: Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6, 116 (2016). https://doi.org/10.3390/catal6080116

    Article  CAS  Google Scholar 

  68. Zhao, S.N., Song, X.Z., Song, S.Y., et al.: Highly efficient heterogeneous catalytic materials derived from metal–organic framework supports/precursors. Coord. Chem. Rev. 337, 80–96 (2017). https://doi.org/10.1016/j.ccr.2017.02.010

    Article  CAS  Google Scholar 

  69. Liu, X.W., Sun, T.J., Hu, J.L., et al.: Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. J. Mater. Chem. A 4, 3584–3616 (2016). https://doi.org/10.1039/c5ta09924b

    Article  CAS  Google Scholar 

  70. Li, W.J., Tu, M., Cao, R., et al.: Metal–organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives. J. Mater. Chem. A 4, 12356–12369 (2016). https://doi.org/10.1039/c6ta02118b

    Article  CAS  Google Scholar 

  71. Li, B., Wen, H.M., Cui, Y.J., et al.: Emerging multifunctional metal–organic framework materials. Adv. Mater. 28, 8819–8860 (2016). https://doi.org/10.1002/adma.201601133

    Article  PubMed  CAS  Google Scholar 

  72. Masoomi, M.Y., Morsali, A.: Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev. 256, 2921–2943 (2012). https://doi.org/10.1016/j.ccr.2012.05.032

    Article  CAS  Google Scholar 

  73. Zhang, X., Chen, A., Zhong, M., et al.: Metal–organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energ. Rev. 2, 29–104 (2019). https://doi.org/10.1007/s41918-018-0024-x

    Article  CAS  Google Scholar 

  74. Wang, L., Han, Y.Z., Feng, X., et al.: Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016). https://doi.org/10.1016/j.ccr.2015.09.002

    Article  CAS  Google Scholar 

  75. Lux, L., Williams, K., Ma, S.Q.: Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm 17, 10–22 (2015). https://doi.org/10.1039/c4ce01499e

    Article  CAS  Google Scholar 

  76. Xia, W., Mahmood, A., Zou, R.Q., et al.: Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/c5ee00762c

    Article  CAS  Google Scholar 

  77. Wang, H.L., Zhu, Q.L., Zou, R.Q., et al.: Metal–organic frameworks for energy applications. Chem 2, 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002

    Article  CAS  Google Scholar 

  78. Wu, H.B., Lou, X.W.: Metal–organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3, eaap9252 (2017). https://doi.org/10.1126/sciadv.aap9252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cheng, X.X., Jiang, Z.Y., Cheng, X.P., et al.: Bimetallic metal–organic frameworks nanocages as multi-functional fillers for water-selective membranes. J. Membr. Sci. 545, 19–28 (2018). https://doi.org/10.1016/j.memsci.2017.09.056

    Article  CAS  Google Scholar 

  80. Dhakshinamoorthy, A., Asiri, A.M., Garcia, H.: Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal. Sci. Technol. 6, 5238–5261 (2016). https://doi.org/10.1039/c6cy00695g

    Article  CAS  Google Scholar 

  81. Mai, H.D., Rafiq, K., Yoo, H.: Frontispiece: nano metal–organic framework-derived inorganic hybrid nanomaterials: synthetic strategies and applications. Chem. Eur. J. 23, 5631–5651 (2017). https://doi.org/10.1002/chem.201782461

    Article  PubMed  CAS  Google Scholar 

  82. Yap, M.H., Fow, K.L., Chen, G.Z.: Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2, 218–245 (2017). https://doi.org/10.1016/j.gee.2017.05.003

    Article  Google Scholar 

  83. Guan, B.Y., Yu, X.Y., Wu, H.B., et al.: Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29, 1703614 (2017). https://doi.org/10.1002/adma.201703614

    Article  CAS  Google Scholar 

  84. Ma, D.L., Shi, X.M., Hu, A.M.: A facile method to in situ synthesize porous Ni2GeO4 nano-sheets on nickel foam as advanced anode electrodes for Li-ion batteries. Nanomaterials 6, 218 (2016). https://doi.org/10.3390/nano6110218

    Article  PubMed Central  CAS  Google Scholar 

  85. Pan, X., Ma, J.J., Yuan, R., et al.: Layered double hydroxides for preparing CoMn2O4 nanoparticles as anodes of lithium ion batteries. Mater. Chem. Phys. 194, 137–141 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.038

    Article  CAS  Google Scholar 

  86. Bhattacharjya, D., Sinhamahapatra, A., Ko, J.J., et al.: High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chem. Commun. 51, 13350–13353 (2015). https://doi.org/10.1039/c5cc04289e

    Article  CAS  Google Scholar 

  87. Yuan, D.X., Wang, X.X., Yin, D.M., et al.: Microwave assisted hydrothermal synthesis of Ni1.5Co1.5S4 as high-performance electrode material for lithium storage. Appl. Surf. Sci. 414, 270–276 (2017). https://doi.org/10.1016/j.apsusc.2017.04.112

    Article  CAS  Google Scholar 

  88. Wang, J.G., Jin, D.D., Zhou, R., et al.: One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 306, 100–106 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.014

    Article  CAS  Google Scholar 

  89. Yu, X.Y., David Lou, X.W.: Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 8, 1701592 (2018). https://doi.org/10.1002/aenm.201701592

    Article  CAS  Google Scholar 

  90. Wang, X.J., Cao, K.Z., Wang, Y.J., et al.: Controllable N-doped CuCo2O4@C film as a self-supported anode for ultrastable sodium-ion batteries. Small 13, 1700873 (2017). https://doi.org/10.1002/smll.201700873

    Article  CAS  Google Scholar 

  91. Song, X.K., Chen, S., Guo, L.L., et al.: General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core–shell nanoparticles for energy storage applications. Adv. Energy Mater. 8, 1801101 (2018). https://doi.org/10.1002/aenm.201801101

    Article  CAS  Google Scholar 

  92. Xiong, P.X., Zeng, G.J., Zeng, L.X., et al.: Prussian blue analogues Mn[Fe(CN)6]0.6667·nH2O cubes as an anode material for lithium-ion batteries. Dalton Trans. 44, 16746–16751 (2015). https://doi.org/10.1039/c5dt03030g

    Article  PubMed  CAS  Google Scholar 

  93. You, Y., Wu, X.L., Yin, Y.X., et al.: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014). https://doi.org/10.1039/c3ee44004d

    Article  CAS  Google Scholar 

  94. Liu, Y., He, D.D., Han, R.M., et al.: Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chem. Commun. 53, 5569–5572 (2017). https://doi.org/10.1039/c7cc02303k

    Article  CAS  Google Scholar 

  95. Wang, L., Lu, Y.H., Liu, J., et al.: A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013). https://doi.org/10.1002/anie.201206854

    Article  CAS  Google Scholar 

  96. Long, J., Asakura, D., Okubo, M., et al.: Electrochemical Li-ion intercalation in octacyanotungstate-bridged coordination polymer with evidence of three magnetic regimes. Inorg. Chem. 55, 7637–7646 (2016). https://doi.org/10.1021/acs.inorgchem.6b01086

    Article  PubMed  CAS  Google Scholar 

  97. Li, C., Hu, X.S., Lou, X.B., et al.: Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem. Commun. 52, 2035–2038 (2016). https://doi.org/10.1039/c5cc07151h

    Article  CAS  Google Scholar 

  98. Li, T., Li, C., Hu, X.S., et al.: Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenetetracarboxylate metal–organic framework with high capacity. RSC Adv. 6, 61319–61324 (2016). https://doi.org/10.1039/c6ra07727g

    Article  CAS  Google Scholar 

  99. Li, M.T., Kong, N., Lan, Y.Q., et al.: Sulfur-containing bimetallic metal organic frameworks with multi-fold helix as anode of lithium ion batteries. Dalton Trans. 47, 4827–4832 (2018). https://doi.org/10.1039/c8dt00095f

    Article  PubMed  CAS  Google Scholar 

  100. Jin, J., Zheng, Y., Huang, S.Z., et al.: Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J. Mater. Chem. A 7, 783–790 (2019). https://doi.org/10.1039/c8ta09327j

    Article  CAS  Google Scholar 

  101. Wang, B.X., Wang, Z.Q., Cui, Y.J., et al.: Electrochemical properties of SnO2 nanoparticles immobilized within a metal–organic framework as an anode material for lithium-ion batteries. RSC Adv. 5, 84662–84665 (2015). https://doi.org/10.1039/c5ra16587c

    Article  CAS  Google Scholar 

  102. Sun, X.M., Gao, G., Yan, D.W., et al.: Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application. Appl. Surf. Sci. 405, 52–59 (2017). https://doi.org/10.1016/j.apsusc.2017.01.247

    Article  CAS  Google Scholar 

  103. Qiao, Q.Q., Li, G.R., Wang, Y.L., et al.: To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. J. Mater. Chem. A 4, 4440–4447 (2016). https://doi.org/10.1039/c6ta00882h

    Article  CAS  Google Scholar 

  104. Yang, X., Xue, H.T., Yang, Q.D., et al.: Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries. Chem. Eng. J. 308, 340–346 (2017). https://doi.org/10.1016/j.cej.2016.09.071

    Article  CAS  Google Scholar 

  105. Yang, X., Tang, Y.B., Huang, X., et al.: Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J. Power Sources 284, 109–114 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.155

    Article  CAS  Google Scholar 

  106. Guo, Y., Qin, G.H., Liang, E.Q., et al.: MOFs-derived MgFe2O4 microboxes as anode material for lithium-ion batteries with superior performance. Ceram. Int. 43, 12519–12525 (2017). https://doi.org/10.1016/j.ceramint.2017.06.124

    Article  CAS  Google Scholar 

  107. Guo, Y., Zhu, Y.Y., Yuan, C., et al.: MgFe2O4 hollow microboxes derived from metal–organic-frameworks as anode material for sodium-ion batteries. Mater. Lett. 199, 101–104 (2017). https://doi.org/10.1016/j.matlet.2017.04.069

    Article  CAS  Google Scholar 

  108. Hou, L.R., Lian, L., Zhang, L.H., et al.: Self-sacrifice template fabrication of hierarchical mesoporous Bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv. Funct. Mater. 25, 238–246 (2015). https://doi.org/10.1002/adfm.201402827

    Article  CAS  Google Scholar 

  109. Cao, H., Zhu, S.Q., Yang, C., et al.: Metal–organic-framework-derived two-dimensional ultrathin mesoporous hetero-ZnFe2O4/ZnO nanosheets with enhanced lithium storage properties for Li-ion batteries. Nanotechnology 27, 465402 (2016). https://doi.org/10.1088/0957-4484/27/46/465402

    Article  PubMed  CAS  Google Scholar 

  110. Cai, D.P., Zhan, H.B., Wang, T.H.: MOF-derived porous ZnO/ZnFe2O4 hybrid nanostructures as advanced anode materials for lithium ion batteries. Mater. Lett. 197, 241–244 (2017). https://doi.org/10.1016/j.matlet.2017.02.012

    Article  CAS  Google Scholar 

  111. Cai, D.P., Liu, B., Wang, D.D., et al.: Rational synthesis of metal–organic framework composites, hollow structures and their derived porous mixed metal oxide hollow structures. J. Mater. Chem. A 4, 183–192 (2016). https://doi.org/10.1039/c5ta07085f

    Article  CAS  Google Scholar 

  112. Guo, H., Li, T.T., Chen, W.W., et al.: Self-assembly formation of hollow Ni–Fe–O nanocage architectures by metal–organic frameworks with high-performance lithium storage. Sci Rep. 5, 13310 (2015). https://doi.org/10.1038/srep13310

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhang, W.Y., Zhu, X.S., Chen, X.G., et al.: Cyano-bridged coordination polymer hydrogel-derived Sn–Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance. Nanoscale 8, 9828–9836 (2016). https://doi.org/10.1039/c6nr01139j

    Article  PubMed  CAS  Google Scholar 

  114. Huang, G., Zhang, L.L., Zhang, F.F., et al.: Metal–organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6, 5509–5515 (2014). https://doi.org/10.1039/c3nr06041a

    Article  PubMed  CAS  Google Scholar 

  115. Zhang, W.Y., Yu, Z.H., Zhang, A.P., et al.: Cyanogel-derived nanoporous Sn–Fe–Ni ternary oxide network for high-capacity and long-life lithium storage. J. Alloys Compd. 691, 250–254 (2017). https://doi.org/10.1016/j.jallcom.2016.08.273

    Article  CAS  Google Scholar 

  116. Chen, J.F., Ru, Q., Mo, Y.D., et al.: Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries. Phys. Chem. Chem. Phys. 18, 18949–18957 (2016). https://doi.org/10.1039/c6cp02871c

    Article  PubMed  CAS  Google Scholar 

  117. Chu, X.F., Wang, C., Zhou, L., et al.: Designed formation of Co3O4@NiCo2O4 sheets-in-cage nanostructure as high-performance anode material for lithium-ion batteries. RSC Adv. 8, 39879–39883 (2018). https://doi.org/10.1039/c8ra07396a

    Article  CAS  Google Scholar 

  118. Xu, W.W., Cui, X.D., Xie, Z.Q., et al.: Integrated Co3O4/TiO2 composite hollow polyhedrons prepared via cation-exchange metal–organic framework for superior lithium-ion batteries. Electrochim. Acta 222, 1021–1028 (2016). https://doi.org/10.1016/j.electacta.2016.11.071

    Article  CAS  Google Scholar 

  119. Sambandam, B., Soundharrajan, V., Song, J.J., et al.: Investigation of Li-ion storage properties of earth abundant β-Mn2V2O7 prepared using facile green strategy. J. Power Sources 350, 80–86 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.054

    Article  CAS  Google Scholar 

  120. Soundharrajan, V., Sambandam, B., Song, J.J., et al.: Facile green synthesis of a Co3V2O8 nanoparticle electrode for high energy lithium-ion battery applications. J. Colloid Interface Sci. 501, 133–141 (2017). https://doi.org/10.1016/j.jcis.2017.04.048

    Article  PubMed  CAS  Google Scholar 

  121. Sambandam, B., Soundharrajan, V., Song, J.J., et al.: Ni3V2O8 nanoparticles as an excellent anode material for high-energy lithium-ion batteries. J. Electroanal. Chem. 810, 34–40 (2018). https://doi.org/10.1016/j.jelechem.2017.12.083

    Article  CAS  Google Scholar 

  122. Sambandam, B., Soundharrajan, V., Song, J.J., et al.: Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries. Chem. Eng. J. 328, 454–463 (2017). https://doi.org/10.1016/j.cej.2017.07.050

    Article  CAS  Google Scholar 

  123. Huang, J., Fang, G.Z., Liu, K., et al.: Controllable synthesis of highly uniform cuboid-shape MOFs and their derivatives for lithium-ion battery and photocatalysis applications. Chem. Eng. J. 322, 281–292 (2017). https://doi.org/10.1016/j.cej.2017.03.136

    Article  CAS  Google Scholar 

  124. Fang, G.Z., Zhou, J., Cai, Y.S., et al.: Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. J. Mater. Chem. A 5, 13983–13993 (2017). https://doi.org/10.1039/c7ta01961k

    Article  CAS  Google Scholar 

  125. Cheong, J.Y., Koo, W.T., Kim, C., et al.: Feasible defect engineering by employing metal organic framework templates into one-dimensional metal oxides for battery applications. ACS Appl. Mater. Interfaces 10, 20540–20549 (2018). https://doi.org/10.1021/acsami.8b04968

    Article  PubMed  CAS  Google Scholar 

  126. Wang, J.P., Zhou, H., Zhu, M.Z., et al.: Metal–organic framework-derived Co3O4 covered by MoS2 nanosheets for high-performance lithium-ion batteries. J. Alloys Compd. 744, 220–227 (2018). https://doi.org/10.1016/j.jallcom.2018.02.086

    Article  CAS  Google Scholar 

  127. Xu, X.H., Cao, K.Z., Wang, Y.J., et al.: 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J. Mater. Chem. A 4, 6042–6047 (2016). https://doi.org/10.1039/c6ta00723f

    Article  CAS  Google Scholar 

  128. Xia, Y., Wang, B.B., Wang, G., et al.: MOF-derived porous NixFe3−xO4 nanotubes with excellent performance in lithium-ion batteries. ChemElectroChem 3, 299–308 (2016). https://doi.org/10.1002/celc.201500419

    Article  CAS  Google Scholar 

  129. Sambandam, B., Soundharrajan, V., Mathew, V., et al.: Metal–organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. J. Mater. Chem. A 4, 14605–14613 (2016). https://doi.org/10.1039/c6ta05919h

    Article  CAS  Google Scholar 

  130. Soundharrajan, V., Sambandam, B., Song, J.J., et al.: Co3V2O8 sponge network morphology derived from metal–organic framework as an excellent lithium storage anode material. ACS Appl. Mater. Interfaces 8, 8546–8553 (2016). https://doi.org/10.1021/acsami.6b01047

    Article  PubMed  CAS  Google Scholar 

  131. Soundharrajan, V., Sambandam, B., Song, J.J., et al.: Bitter gourd-shaped Ni3V2O8 anode developed by a one-pot metal-organic framework-combustion technique for advanced Li-ion batteries. Ceram. Int. 43, 13224–13232 (2017). https://doi.org/10.1016/j.ceramint.2017.07.018

    Article  CAS  Google Scholar 

  132. Hong, Z.S., Kang, M.L., Chen, X.H., et al.: Synthesis of mesoporous Co2+-doped TiO2 nanodisks derived from metal organic frameworks with improved sodium storage performance. ACS Appl. Mater. Interfaces 9, 32071–32079 (2017). https://doi.org/10.1021/acsami.7b06290

    Article  PubMed  CAS  Google Scholar 

  133. Wu, L.L., Wang, Z., Long, Y., et al.: Multishelled NixCo3−xO4 hollow microspheres derived from bimetal–organic frameworks as anode materials for high-performance lithium-ion batteries. Small 13, 1604270 (2017). https://doi.org/10.1002/smll.201604270

    Article  CAS  Google Scholar 

  134. Wang, L.J., Wang, X.J., Meng, Z.H., et al.: MOF-templated thermolysis for porous CuO/Cu2O@CeO2 anode material of lithium-ion batteries with high rate performance. J. Mater. Sci. 52, 7140–7148 (2017). https://doi.org/10.1007/s10853-017-0949-1

    Article  CAS  Google Scholar 

  135. Wang, B., Wang, X.Y., Yu, X.Z.: Metal–organic frameworks derived (Cu0.30Co0.7)Co2O4/CuO composite rectangular pyramid grass as high performance anode materials for lithium ion battery. Electrochim. Acta 250, 35–41 (2017). https://doi.org/10.1016/j.electacta.2017.08.029

    Article  CAS  Google Scholar 

  136. Hu, X.S., Li, C., Lou, X.B., et al.: Controlled synthesis of CoxMn3−xO4 nanoparticles with a tunable composition and size for high performance lithium-ion batteries. RSC Adv. 6, 54270–54276 (2016). https://doi.org/10.1039/c6ra08700k

    Article  CAS  Google Scholar 

  137. Wang, D.P., Fu, M.S., Ha, Y., et al.: Metal–organic framework-derived mesoporous octahedral copper oxide/titania composites for high-performance lithium-ion batteries. J. Colloids Interface Sci. 529, 265–272 (2018). https://doi.org/10.1016/j.jcis.2018.06.010

    Article  CAS  Google Scholar 

  138. Li, H., Liang, M., Sun, W.W., et al.: Lithium-ion batteries: bimetal–organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage (adv. funct. mater. 7/2016). Adv. Funct. Mater. 26, 982 (2016). https://doi.org/10.1002/adfm.201670041

    Article  Google Scholar 

  139. Zhong, M., Yang, D.H., Kong, L.J., et al.: Bimetallic metal–organic framework derived Co3O4–CoFe2O4 composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Trans. 46, 15947–15953 (2017). https://doi.org/10.1039/c7dt03047a

    Article  PubMed  CAS  Google Scholar 

  140. Du, M.J., He, D., Lou, Y.B., et al.: Porous nanostructured ZnCo2O4 derived from MOF-74: high-performance anode materials for lithium ion batteries. J. Energy Chem. 26, 673–680 (2017). https://doi.org/10.1016/j.jechem.2017.02.001

    Article  Google Scholar 

  141. Zhang, C.Y., Dai, J., Zhang, P.G., et al.: Porous Fe2O3/ZnO composite derived from MOFs as an anode material for lithium ion batteries. Ceram. Int. 42, 1044–1049 (2016). https://doi.org/10.1016/j.ceramint.2015.09.028

    Article  CAS  Google Scholar 

  142. Huang, G.Y., Guo, X.Y., Cao, X., et al.: 3D network single-phase Ni0.9Zn0.1O as anode materials for lithium-ion batteries. Nano Energy 28, 338–345 (2016). https://doi.org/10.1016/j.nanoen.2016.08.050

    Article  CAS  Google Scholar 

  143. Lu, Y., Yu, L., Wu, M.H., et al.: Construction of complex Co3O4@Co3V2O8 hollow structures from metal–organic frameworks with enhanced lithium storage properties. Adv. Mater. 30, 1702875 (2018). https://doi.org/10.1002/adma.201702875

    Article  CAS  Google Scholar 

  144. Li, J.B., Yan, D., Hou, S.J., et al.: Metal–organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 335, 579–589 (2018). https://doi.org/10.1016/j.cej.2017.10.183

    Article  CAS  Google Scholar 

  145. Guo, W.X., Sun, W.W., Wang, Y.: Multilayer CuO@NiO hollow spheres: microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9, 11462–11471 (2015). https://doi.org/10.1021/acsnano.5b05610

    Article  PubMed  CAS  Google Scholar 

  146. Geng, H.B., Ang, H.X., Ding, X.G., et al.: Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8, 2967–2973 (2016). https://doi.org/10.1039/c5nr08570e

    Article  PubMed  CAS  Google Scholar 

  147. Ye, L.W., Yuan, Y.F., Zhang, D., et al.: Heterogeneous triple-shelled TiO2@NiCo2O4@Co3O4 nanocages as improved performance anodes for lithium-ion batteries. Mater. Lett. 232, 228–231 (2018). https://doi.org/10.1016/j.matlet.2018.08.131

    Article  CAS  Google Scholar 

  148. Huang, G., Yin, D.M., Wang, L.M.: A general strategy for coating metal-organic frameworks on diverse components and architectures. J. Mater. Chem. A 4, 15106–15116 (2016). https://doi.org/10.1039/c6ta05389k

    Article  CAS  Google Scholar 

  149. Song, Y.H., Chen, Y.Q., Fu, Y.Y., et al.: Hollow multicomponent zeolitic imidazolate frameworks-derived 3NiO·2Ni3/2Co1/2ZnO4 for high rate lithium-ion batteries. J. Alloys Compd. 703, 148–155 (2017). https://doi.org/10.1016/j.jallcom.2017.01.339

    Article  CAS  Google Scholar 

  150. Huang, G., Li, Q., Yin, D.M., et al.: Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@metal–organic frameworks for superior lithium storage capability. Adv. Funct. Mater. 27, 1604941 (2017). https://doi.org/10.1002/adfm.201604941

    Article  CAS  Google Scholar 

  151. Gong, F., Xia, D., Zhou, Q., et al.: Novel spherical cobalt/nickel mixed-vanadates as high-capacity anodes in lithium ion batteries. J. Alloys Compd. 766, 442–449 (2018). https://doi.org/10.1016/j.jallcom.2018.06.233

    Article  CAS  Google Scholar 

  152. Zhao, Z.W., Wen, T., Liang, K., et al.: Carbon-coated Fe3O4/VOx hollow microboxes derived from metal–organic frameworks as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 3757–3765 (2017). https://doi.org/10.1021/acsami.6b15110

    Article  PubMed  CAS  Google Scholar 

  153. Xiao, Y., Cao, M.H.: Dual hybrid strategy towards achieving high capacity and long-life lithium storage of ZnO. J. Power Sources 305, 1–9 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.071

    Article  CAS  Google Scholar 

  154. Chen, S.H.: Lithium-ion batteries anodic performance of porous Sn/C–ZnO core–shell structures derivedfrom ZIF-8. Int. J. Electrochem. Sci. 11, 10522–10535 (2016). https://doi.org/10.20964/2016.12.62

    Article  CAS  Google Scholar 

  155. Liu, T.Q., Wang, W.Q., Yi, M.J., et al.: Metal–organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem. Eng. J. 354, 454–462 (2018). https://doi.org/10.1016/j.cej.2018.08.037

    Article  CAS  Google Scholar 

  156. Gan, Q.M., Zhao, K.M., Liu, S.Q., et al.: MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J. Mater. Sci. 52, 7768–7780 (2017). https://doi.org/10.1007/s10853-017-1043-4

    Article  CAS  Google Scholar 

  157. Zhong, M., Yang, D.H., Xie, C.C., et al.: Yolk–shell MnO@ZnMn2O4/N–C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12, 5564–5571 (2016). https://doi.org/10.1002/smll.201601959

    Article  PubMed  CAS  Google Scholar 

  158. Ma, Y., Ma, Y.J., Geiger, D., et al.: ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries. Nano Energy 42, 341–352 (2017). https://doi.org/10.1016/j.nanoen.2017.11.030

    Article  CAS  Google Scholar 

  159. Niu, J.L., Zeng, C.H., Peng, H.J., et al.: Formation of N-doped carbon-coated ZnO/ZnCo2O4/CuCo2O4 derived from a polymetallic metal-organic framework: toward high-rate and long-cycle-life lithium storage. Small 13, 1702150 (2017). https://doi.org/10.1002/smll.201702150

    Article  CAS  Google Scholar 

  160. Zou, F., Hu, X.L., Li, Z., et al.: MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 26, 6622–6628 (2014). https://doi.org/10.1002/adma.201402322

    Article  PubMed  CAS  Google Scholar 

  161. Chen, Y.Q., Wu, J.F., Yang, W.S., et al.: Zn/Fe-MOFs-derived hierarchical ball-in-ball ZnO/ZnFe2O4@carbon nanospheres with exceptional lithium storage performance. J. Alloys Compd. 688, 211–218 (2016). https://doi.org/10.1016/j.jallcom.2016.07.011

    Article  CAS  Google Scholar 

  162. Gao, X.J., Wang, J.W., Zhang, D., et al.: Hollow NiFe2O4 nanospheres on carbon nanorods as a highly efficient anode material for lithium ion batteries. J. Mater. Chem. A 5, 5007–5012 (2017). https://doi.org/10.1039/c6ta11058d

    Article  CAS  Google Scholar 

  163. Shi, X., Liu, S.T., Tang, B., et al.: SnO2/TiO2 nanocomposites embedded in porous carbon as a superior anode material for lithium-ion batteries. Chem. Eng. J. 330, 453–461 (2017). https://doi.org/10.1016/j.cej.2017.07.164

    Article  CAS  Google Scholar 

  164. Yue, H.Y., Shi, Z.P., Wang, L., et al.: Rapid calcination synthesis of Zn2SnO4@C/Sn composites for high-performance lithium ion battery anodes. J. Alloys Compd. 723, 1018–1025 (2017). https://doi.org/10.1016/j.jallcom.2017.06.318

    Article  CAS  Google Scholar 

  165. Wang, Y.Z., Kong, M.G., Liu, Z.W., et al.: Morella-rubra-like metal–organic-framework-derived multilayered Co3O4/NiO/C hybrids as high-performance anodes for lithium storage. J. Mater. Chem. A 5, 24269–24274 (2017). https://doi.org/10.1039/c7ta08264a

    Article  CAS  Google Scholar 

  166. Jiang, Z.J., Cheng, S., Rong, H.B., et al.: General synthesis of MFe2O4/carbon (M = Zn, Mn Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J. Mater. Chem. A 5, 23641–23650 (2017). https://doi.org/10.1039/c7ta07097g

    Article  CAS  Google Scholar 

  167. Wu, X., Zeng, M., Wang, L.G., et al.: CTAB-assisted synthesis of ZnCo2O4 nanoparticles embedded in N-doped carbon as superior anode materials for lithium-ion battery. J. Alloys Compd. 780, 897–906 (2019). https://doi.org/10.1016/j.jallcom.2018.12.029

    Article  CAS  Google Scholar 

  168. Niu, S.S., Wang, Z.Y., Zhou, T., et al.: A polymetallic metal–organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity. Adv. Funct. Mater. 27, 1605332 (2017). https://doi.org/10.1002/adfm.201605332

    Article  CAS  Google Scholar 

  169. Yu, L.T., Liu, J., Xu, X.J., et al.: Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 11, 5120–5129 (2017). https://doi.org/10.1021/acsnano.7b02136

    Article  PubMed  CAS  Google Scholar 

  170. Park, S.K., Yang, S.H., Kang, Y.C.: Rational design of metal–organic framework-templated hollow NiCo2O4 polyhedrons decorated on macroporous CNT microspheres for improved lithium-ion storage properties. Chem. Eng. J. 349, 214–222 (2018). https://doi.org/10.1016/j.cej.2018.05.091

    Article  CAS  Google Scholar 

  171. Joshi, B., Samuel, E., Il Kim, Y., et al.: Hierarchically designed ZIF-8-derived Ni@ZnO/carbon nanofiber freestanding composite for stable Li storage. Chem. Eng. J. 351, 127–134 (2018). https://doi.org/10.1016/j.cej.2018.05.098

    Article  CAS  Google Scholar 

  172. Jia, Z.Q., Tan, Y.B., Cui, Z.H., et al.: Construction of NiCo2O4@graphene nanorods by tuning the compositional chemistry of metal–organic frameworks with enhanced lithium storage properties. J. Mater. Chem. A 6, 19604–19610 (2018). https://doi.org/10.1039/c8ta07967f

    Article  CAS  Google Scholar 

  173. Zhu, Q., Li, Y.H., Gao, Y., et al.: Reduced graphene-wrapped MnO2 nanowires self-inserted with Co3O4 nanocages: remarkable enhanced performances for lithium-ion anode applications. Chem. Eur. J. 22, 6876–6880 (2016). https://doi.org/10.1002/chem.201600456

    Article  PubMed  CAS  Google Scholar 

  174. Zhang, K.X., Yang, H.X., Lü, M.F., et al.: Porous MoO2–Cu/C/Graphene nano-octahedrons quadruple nanocomposites as an advanced anode for lithium ion batteries with enhanced rate capability. J. Alloys Compd. 731, 646–654 (2018). https://doi.org/10.1016/j.jallcom.2017.10.091

    Article  CAS  Google Scholar 

  175. Dai, J.Y., Li, J.J., Zhang, Q.B., et al.: Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode. Mater. Lett. 236, 483–486 (2019). https://doi.org/10.1016/j.matlet.2018.10.166

    Article  CAS  Google Scholar 

  176. Dong, S.H., Li, C.X., Ge, X.L., et al.: ZnS–Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11, 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321

    Article  PubMed  CAS  Google Scholar 

  177. Xu, X.J., Liu, Z.B., Ji, S.M., et al.: Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chem. Eng. J. 359, 765–774 (2019). https://doi.org/10.1016/j.cej.2018.11.191

    Article  CAS  Google Scholar 

  178. Yuan, D.X., Huang, G., Yin, D.M., et al.: Metal–organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces. 9, 18178–18186 (2017). https://doi.org/10.1021/acsami.7b02176

    Article  PubMed  CAS  Google Scholar 

  179. Aslam, M.K., Shah, S.S.A., Li, S., et al.: Kinetically controlled synthesis of MOF nanostructures: single-holed hollow core–shell ZnCoS@Co9S8/NC for ultra-high performance lithium-ion batteries. J. Mater. Chem. A 6, 14083–14090 (2018). https://doi.org/10.1039/c8ta04676j

    Article  CAS  Google Scholar 

  180. Liu, X.Y., Zou, F., Liu, K.W., et al.: A binary metal organic framework derived hierarchical hollow Ni3S2/Co9S8/N-doped carbon composite with superior sodium storage performance. J. Mater. Chem. A 5, 11781–11787 (2017). https://doi.org/10.1039/c7ta00201g

    Article  CAS  Google Scholar 

  181. Li, H., Su, Y., Sun, W.W., et al.: Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: bimetal–organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries. Adv. Funct. Mater. 26, 8345–8353 (2016). https://doi.org/10.1002/adfm.201601631

    Article  CAS  Google Scholar 

  182. Wang, H., Chen, Z.L., Liu, Y., et al.: Hierarchically porous-structured ZnxCo1–xS@C–CNT nanocomposites with high-rate cycling performance for lithium-ion batteries. J. Mater. Chem. A 5, 23221–23227 (2017). https://doi.org/10.1039/c7ta07993a

    Article  CAS  Google Scholar 

  183. Park, S.K., Kim, J.K., Kang, Y.C.: Metal–organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution. J. Mater. Chem. A 5, 18823–18830 (2017). https://doi.org/10.1039/c7ta05571d

    Article  CAS  Google Scholar 

  184. Xu, H.B., Wu, R.B.: Porous hollow composites assembled by NixCo1−xSe2 nanosheets rooted on carbon polyhedra for superior lithium storage capability. J. Colloid Interface Sci. 536, 673–680 (2019). https://doi.org/10.1016/j.jcis.2018.10.110

    Article  PubMed  CAS  Google Scholar 

  185. Sun, W.W., Cai, C., Tang, X.X., et al.: Carbon coated mixed-metal selenide microrod: bimetal–organic-framework derivation approach and applications for lithium-ion batteries. Chem. Eng. J. 351, 169–176 (2018). https://doi.org/10.1016/j.cej.2018.06.093

    Article  CAS  Google Scholar 

  186. Jin, J., Zheng, Y., Kong, L.B., et al.: Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. J. Mater. Chem. A 6, 15710–15717 (2018). https://doi.org/10.1039/c8ta04425b

    Article  CAS  Google Scholar 

  187. Wang, Y.Y., Fan, H.S., Hou, B.H., et al.: Ni1.5CoSe5 Nanocubes embedded in 3D dual N-doped carbon network as advanced anode material in sodium-ion full cells with superior low-temperature and high-power properties. J. Mater. Chem. A 6, 22966–22975 (2018). https://doi.org/10.1039/c8ta09264h

    Article  CAS  Google Scholar 

  188. Wang, X.X., Na, Z.L., Yin, D.M., et al.: Nanosized FexNi2−xP embedded phosphorus-doped carbon nanorods with superior lithium storage performance. Energy Storage Mater. 12, 103–109 (2018). https://doi.org/10.1016/j.ensm.2017.12.004

    Article  Google Scholar 

  189. Li, Z.Q., Zhang, L.Y., Ge, X.L., et al.: Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 32, 494–502 (2017). https://doi.org/10.1016/j.nanoen.2017.01.009

    Article  CAS  Google Scholar 

  190. Chen, T., Cheng, B.R., Chen, R.P., et al.: Hierarchical ternary carbide nanoparticle/carbon nanotube-inserted N-doped carbon concave-polyhedrons for efficient lithium and sodium storage. ACS Appl. Mater. Interfaces 8, 26834–26841 (2016). https://doi.org/10.1021/acsami.6b08911

    Article  PubMed  CAS  Google Scholar 

  191. Ke, F., Li, Y.Z., Zhang, C.Y., et al.: MOG-derived porous FeCo/C nanocomposites as a potential platform for enhanced catalytic activity and lithium-ion batteries performance. J. Colloid Interface Sci. 522, 283–290 (2018). https://doi.org/10.1016/j.jcis.2018.03.081

    Article  PubMed  CAS  Google Scholar 

  192. Dai, R.L., Sun, W.W., Lv, L.P., et al.: Bimetal–organic-framework derivation of ball-cactus-like Ni–Sn–P@C–CNT as long-cycle anode for lithium ion battery. Small 13, 1700521 (2017). https://doi.org/10.1002/smll.201700521

    Article  CAS  Google Scholar 

  193. Shi, X., Song, H.H., Li, A., et al.: Sn-Co nanoalloys embedded in porous N-doped carbon microboxes as a stable anode material for lithium-ion batteries. J. Mater. Chem. A 5, 5873–5879 (2017). https://doi.org/10.1039/c7ta00099e

    Article  CAS  Google Scholar 

  194. Yu, L.T., Liu, J., Xu, X.J., et al.: Metal–organic framework-derived NiSb alloy embedded in carbon hollow spheres as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 9, 2516–2525 (2017). https://doi.org/10.1021/acsami.6b14233

    Article  PubMed  CAS  Google Scholar 

  195. Chen, X.G., Zhang, W.Y., Liu, T.H., et al.: Hydrogel-derived nanoporous Sn-in-Ni ternary alloy network for high-performance lithium-storage. Electrochim. Acta 210, 530–538 (2016). https://doi.org/10.1016/j.electacta.2016.05.184

    Article  CAS  Google Scholar 

  196. Huang, M., Mi, K., Zhang, J.H., et al.: MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5, 266–274 (2017). https://doi.org/10.1039/c6ta09030c

    Article  CAS  Google Scholar 

  197. Yang, S.F., Ren, W.F., Chen, J.: Facile synthesis of spinel LiNi0.5Mn1.5O4 cathode materials using M2(OH)2(C8H4O4)-class metal–organic frameworks. Ionics 23, 2969–2980 (2017). https://doi.org/10.1007/s11581-017-2102-1

    Article  CAS  Google Scholar 

  198. Tang, B., Li, A., Tong, Y., et al.: Carbon-coated Li4Ti5O12 tablets derived from metal–organic frameworks as anode material for lithium-ion batteries. J. Alloys Compd. 708, 6–13 (2017). https://doi.org/10.1016/j.jallcom.2017.02.279

    Article  CAS  Google Scholar 

  199. Wang, X.J., Wang, L.J., Chen, B.K., et al.: MOFs as reactant: in situ synthesis of Li2ZnTi3O8@C–N nanocomposites as high performance anodes for lithium-ion batteries. J. Electroanal. Chem. 775, 311–319 (2016). https://doi.org/10.1016/j.jelechem.2016.06.024

    Article  CAS  Google Scholar 

  200. Zhao, Y., Song, Z.X., Li, X., et al.: Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35–62 (2016). https://doi.org/10.1016/j.ensm.2015.11.005

    Article  Google Scholar 

  201. Guo, W.H., Xia, W., Cai, K.T., et al.: Kinetic-controlled formation of bimetallic metal–organic framework hybrid structures. Small 13, 1702049 (2017). https://doi.org/10.1002/smll.201770218

    Article  CAS  Google Scholar 

  202. Ke, F.S., Wu, Y.S., Deng, H.X.: Metal–organic frameworks for lithium ion batteries and supercapacitors. J. Solid State Chem. 223, 109–121 (2015). https://doi.org/10.1016/j.jssc.2014.07.008

    Article  CAS  Google Scholar 

  203. Chen, Y.M., Li, Z., Lou, X.W.D.: General formation of MxCo3–xS4 (M = Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew. Chem. Int. Ed. 54, 10521–10524 (2015). https://doi.org/10.1002/anie.201504349

    Article  CAS  Google Scholar 

  204. Liu, X.M., Ai, L.H., Jiang, J.: Interconnected porous hollow CuS microspheres derived from metal-organic frameworks for efficient adsorption and electrochemical biosensing. Powder Technol. 283, 539–548 (2015). https://doi.org/10.1016/j.powtec.2015.06.016

    Article  CAS  Google Scholar 

  205. Idota, Y.: Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997). https://doi.org/10.1126/science.276.5317.1395

    Article  CAS  Google Scholar 

  206. He, Y., Yu, X.Q., Wang, Y.H., et al.: Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv. Mater. 23, 4938–4941 (2011). https://doi.org/10.1002/adma.201102568

    Article  PubMed  CAS  Google Scholar 

  207. Bennett, T.D., Tan, J.C., Yue, Y.Z., et al.: Hybrid glasses from strong and fragile metal–organic framework liquids. Nat. Commun 6, 8079 (2015). https://doi.org/10.1038/ncomms9079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Hu, Y.C., Wang, Y.Z., Su, R., et al.: A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater. 28, 10293–10297 (2016). https://doi.org/10.1002/adma.201603880

    Article  PubMed  CAS  Google Scholar 

  209. Sekol, R.C., Kumar, G., Carmo, M., et al.: Bulk metallic glass micro fuel cell. Small 9, 2081–2085 (2013). https://doi.org/10.1002/smll.201201647

    Article  PubMed  CAS  Google Scholar 

  210. Bai, L.Y., Gao, Q., Zhao, Y.L.: Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 4, 14106–14110 (2016). https://doi.org/10.1039/c6ta06449c

    Article  CAS  Google Scholar 

  211. Wang, S., Wang, Q.Y., Shao, P.P., et al.: Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017). https://doi.org/10.1021/jacs.7b02648

    Article  PubMed  CAS  Google Scholar 

  212. Xu, F., Jin, S.B., Zhong, H., et al.: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225 (2015). https://doi.org/10.1038/srep08225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Yang, X.F., Dong, B., Zhang, H.Z., et al.: Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium–sulfur batteries. RSC Adv. 5, 86137–86143 (2015). https://doi.org/10.1039/c5ra16235a

    Article  CAS  Google Scholar 

  214. Mulzer, C.R., Shen, L.X., Bisbey, R.P., et al.: Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2, 667–673 (2016). https://doi.org/10.1021/acscentsci.6b00220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Lei, Z.D., Chen, X.D., Sun, W.W., et al.: Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 9, 1801010 (2019). https://doi.org/10.1002/aenm.201801010

    Article  CAS  Google Scholar 

  216. Yoo, J., Cho, S.J., Jung, G.Y., et al.: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium–sulfur batteries. Nano Lett. 16, 3292–3300 (2016). https://doi.org/10.1021/acs.nanolett.6b00870

    Article  PubMed  CAS  Google Scholar 

  217. Liao, H.P., Ding, H.M., Li, B.J., et al.: Covalent–organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. J. Mater. Chem. A 2, 8854–8858 (2014). https://doi.org/10.1039/c4ta00523f

    Article  CAS  Google Scholar 

  218. Guo, B.K., Ben, T., Bi, Z.H., et al.: Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries. Chem. Commun. 49, 4905 (2013). https://doi.org/10.1039/c3cc41518j

    Article  CAS  Google Scholar 

  219. Liao, H.P., Wang, H.M., Ding, H.M., et al.: A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. J. Mater. Chem. A 4, 7416–7421 (2016). https://doi.org/10.1039/c6ta00483k

    Article  CAS  Google Scholar 

  220. Yang, D.H., Yao, Z.Q., Wu, D.H., et al.: Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J. Mater. Chem. A 4, 18621–18627 (2016). https://doi.org/10.1039/c6ta07606h

    Article  CAS  Google Scholar 

  221. Yang, H., Zhang, S.L., Han, L.H., et al.: High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces. 8, 5366–5375 (2016). https://doi.org/10.1021/acsami.5b12370

    Article  PubMed  CAS  Google Scholar 

  222. Zhang, Q.T., Dai, Q.Q., Li, M., et al.: Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage. J. Mater. Chem. A 4, 19132–19139 (2016). https://doi.org/10.1039/c6ta08464h

    Article  CAS  Google Scholar 

  223. Yang, X.Q., Wei, C., Sun, C.C., et al.: High performance anode of lithium-ion batteries derived from an advanced carbonaceous porous network. J. Alloys Compd. 693, 777–781 (2017). https://doi.org/10.1016/j.jallcom.2016.09.192

    Article  CAS  Google Scholar 

  224. Lei, Z.D., Yang, Q.S., Xu, Y., et al.: Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 9, 576 (2018). https://doi.org/10.1038/s41467-018-02889-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Shanghai Municipal Education Commission (CN) Grant No. (2019-01-07-00-09-E00021) and Science and Technology Commission of Shanghai Municipality Grant No. (17010500300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Additional information

Weiwei Sun and Xuxu Tang contributed equally to this work.

Appendix

Appendix

See Table 5.

Table 5 Abbreviations for the ligands of MOFs appearing in Tables 1, 2, 3, 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Tang, X. & Wang, Y. Multi-metal–Organic Frameworks and Their Derived Materials for Li/Na-Ion Batteries. Electrochem. Energ. Rev. 3, 127–154 (2020). https://doi.org/10.1007/s41918-019-00056-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00056-0

Keywords

Navigation