Skip to main content
Log in

Finishing characteristics of Inconel alloy 625 bars in ultra-precision magnetic abrasive finishing using CNC machine center

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An ultra-precision magnetic abrasive finishing (UPMAF) process is an efficient mirror finishing technique. This research utilized the ultra-precision magnetic abrasive finishing technique to improve the accuracy of advanced material of Inconel alloy 625 cylindrical bars. The finishing technique employed flexible unbonded magnetic abrasive tools with neodymium permanent magnets (Nd-Fe-B), and components of the finishing procedure were installed with a five-dimensional computer numerical control (CNC) machining center. The surface accuracy and dimensional accuracy of Inconel alloy 625 bars were enhanced by the ultra-precision magnetic abrasive finishing technique with input parameters of workpiece rotational speed, workpiece feed rate, and magnetic abrasive grain size. After characterization with energy dispersive X-ray analysis (EDX), atomic force microscope (AFM), and a thermal imaging camera, we found that this ultra-precision magnetic polishing technology can improve surface roughness Ry of Inconel alloy 625 cylindrical bars from 2010 nm to 200 nm at a rotational speed of 12000 rpm, feed rate of 2000 mm/min, diamond abrasive grain size of 1 μm, and flux density of 300 mT processing of 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. L. Pereira, J. M. Lourenço, R. M. D. Nascimento and N. A. Castro, Fracture behavior and fatigue performance of Inconel 625, Materials Research, 21 (2018).

  2. B. Dubiel and J. J. M. Sieniawski, Precipitates in additively manufactured Inconel 625 superalloy, Materials, 12 (2019) 1144.

    Article  Google Scholar 

  3. A. Gunen and E. J. M. Kanca, Microstructure and mechanical properties of borided Inconel 625 superalloy, Matéria (Rio de Janeiro), 22 (2017).

  4. C. Yin, L. Heng, J. S. Kim, M. S. Kim and S. D. Mun, Development of a new ecological magnetic abrasive tool for finishing bio-wire material, Materials, 12 (2019) 714.

    Article  Google Scholar 

  5. A. Parida and K. Maity, Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation, Engineering Science and Technology, An International Journal, 21 (2018).

  6. B. Słodki, Uild up edge phenomenon and chip forms in Inconel 625 alloy longitudinal turning-case study, Czasopismo Techniczne, 2016 (2016) 103–112.

    Google Scholar 

  7. B. Deepak, R. S. Walia and N. M. Suri, Effect of rotational motion on the flat work piece magnetic abrasive finishing, Int. J. Surf. Eng. Mater. Technol., 2 (2012) 50–54.

    Google Scholar 

  8. P. Jindal, A. Santhanam and U. Schleinkofer, Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning, International Journal of Refractory Metals and Hard Materials, 17 (1999) 163–170.

    Article  Google Scholar 

  9. N. Richards and D. Aspinwall, Use of ceramic tools for machining nickel based alloys, International Journal of Machine Tools and Manufacture, 29 (1989) 575–588.

    Article  Google Scholar 

  10. N. J. Park, L. Heng, R. Wang, M. S. Kim and S. D. Mun, Ultra-high-precision machining of microscale-diameter zirconia ceramic bars by means of magnetic abrasive finishing, Applied Mechanics and Materials, Trans. Tech. Publ., 851 (2016) 98–105.

    Article  Google Scholar 

  11. D. K. Singh, V. Jain and V. Raghuram, Experimental investigations into forces acting during a magnetic abrasive finishing process, The International Journal of Advanced Manufacturing Technology, 30 (2006) 652–662.

    Article  Google Scholar 

  12. L. Heng, Y. J. Kim and S. D. Mun, Review of superfinishing by the magnetic abrasive finishing process, High Speed Machining, 3 (2017) 42–55.

    Article  Google Scholar 

  13. S. Greco, K. Gutzeit, H. Hotz, B. Kirsch and J. C. Aurich, Selective laser melting (SLM) of AISI 316L-impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density, The International Journal of Advanced Manufacturing Technology, 108 (2020) 1551–1562.

    Article  Google Scholar 

  14. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh and S. L. Sing, Review of selective laser melting: materials and applications, Applied Physics Reviews, 2 (2015) 041101.

    Article  Google Scholar 

  15. G. Strano, L. Hao, R. M. Everson and K. E. Evans, Surface roughness analysis, modelling and prediction in selective laser melting, Journal of Materials Processing Technology, 213 (2013) 589–597.

    Article  Google Scholar 

  16. P. K. Gokuldoss, S. Kolla and J. Eckert, Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines, Materials (Basel), 10 (2017) 672.

    Article  Google Scholar 

  17. K. Naveen, V. V. Shanbhag, N. Balashanmugam and P. Vinod, Ultra-precision finishing by magnetic abrasive finishing process, Materials Today: Proceedings, 5 (2018) 12426–12436.

    Google Scholar 

  18. J. Wu, Y. Zou and H. Sugiyama, Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field, Journal of Magnetism and Magnetic Materials, 386 (2015) 50–59.

    Article  Google Scholar 

  19. G. Ghosh, A. Sidpara and P. P. Bandyopadhyay, Review of several precision finishing processes for optics manufacturing, Journal of Micro Manufacturing, 1 (2018) 170–188.

    Google Scholar 

  20. K. Naveen, V. V. Shanbhag, N. Balashanmugam and P. Vinod, Ultra-precision finishing by magnetic abrasive finishing process, Materials Today: Proceedings, 5 (2018) 12426–12436.

    Google Scholar 

  21. Y. Zou, S. Akutsu and T. Sinmura, Development of a new ultra-precision magnetic abrasive finishing process, Journal of the Japan Society for Abrasive Technology, 54 (2010) 97–100.

    Google Scholar 

  22. J. Z. Wu and Y. Zou, Study on an ultra-precision plane magnetic abrasive finishing process by use of alternating magnetic field, Applied Mechanics and Materials, 395–396 (2013) 985–989.

    Article  Google Scholar 

  23. J. Guo, K. H. Au, C. N. Sun, M. H. Goh, C. W. Kum, K. Liu, J. Wei, H. Suzuki and R. Kang, Novel rotating-vibrating magnetic abrasive polishing method for double-layered internal surface finishing, Journal of Materials Processing Technology, 264 (2019) 422–437.

    Article  Google Scholar 

  24. Q. Zhang, R. Tang, K. Yin, X. Luo and L. Zhang, Corrosion behavior of Hastelloy C-276 in supercritical water, Corrosion Science, 51 (2009) 2092–2097.

    Article  Google Scholar 

  25. S. Kosaraju, M. Vijay Kumar and N. Sateesh, Optimization of machining parameter in turning Inconel 625, Materials Today: Proceedings, 5 (2018) 5343–5348.

    Google Scholar 

  26. A. Goyal, A. Pandey and P. Sharma, Investigation of surface roughness for inconel 625 using wire electric discharge machining, IOP Conference Series: Materials Science and Engineering, 377 (2018) 012109.

    Article  Google Scholar 

  27. M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura and Y. Matsuura, Nd-Fe-B permanent magnet materials, Japanese Journal of Applied Physics, 26 (1987) 785.

    Article  Google Scholar 

  28. H. Sepehri-Amin, S. Hirosawa and K. Hono, Chapter 4 — advances in Nd-Fe-B based permanent magnets, E. Brück (Ed.), Handbook of Magnetic Materials, Elsevier (2018) 269–372.

Download references

Acknowledgments

This work was financially supported by the National Research Foundation of Korea via a grant funded by the Korean government (Project No: 2020R1F1A1061754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Joo Kim.

Additional information

Jung-Tak Bae is currently a Ph.D. student in Jeonbuk National University and his research field is related to 3-D, 5-D CNC machine center, EDM wire cutter and ultra-precision lapping process.

Han Joo Kim is currently a Professor of Convergence Tech. Eng. at Jeonbuk National University. His research interests are automotive parts and composite materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J.T., Kim, H.J. Finishing characteristics of Inconel alloy 625 bars in ultra-precision magnetic abrasive finishing using CNC machine center. J Mech Sci Technol 35, 2851–2859 (2021). https://doi.org/10.1007/s12206-021-0608-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0608-y

Keywords

Navigation