Skip to main content
Log in

Molecular dynamics simulations of homogeneous condensation and thermophysical properties of HFO1123 and its binary blends with HFC134a at 273.15 K to 298.15 K

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The hydrofluoroolefin (HFO) refrigerant R1123 (1,1,2-trifluoroethene) and its blends with R134a are excellent alternative choices for refrigeration systems, considering environmental issues and system performance. Molecular dynamics (MD) simulations were performed to investigate the homogeneous condensation process and to predict the density and isobaric heat capacity of pure R1123 and its binary blends with R134a. The condensation rate of pure R1123 and the (R1123+R134a) blends was higher at lower condensation temperatures. The vapor molecules went through a rapid phase transition to a subcooled liquid state during a particular time period, and the potential energy of the molecular systems was drastically reduced at this time. During condensation, clusters of molecules were initially formed, and they subsequently aggregated to develop a condensate droplet. The liquid density and isobaric heat capacity of pure R1123 and its four blends were predicted for the temperature range of 273.15 K to 298.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gupta, N. K. Karanam, R. Konijeti and A. Dasore, Thermodynamic analysis and effects of replacing HFC by fourthgeneration refrigerants in VCR systems, Int. J. Air-Cond. Ref., 26 (2018) 1850013.

    Article  Google Scholar 

  2. J. M. Calm, The next generation of refrigerants Historical review, considerations and outlook, Int. J. Refrig., 31 (7) (2008) 1123–1133.

    Article  Google Scholar 

  3. D. Brack, Manual del Protocolo de Montreal relativo a las sustancias que agotan la Capa de Ozono, 7a Edición, Secretaría del Ozono del Programa de las Naciones Unidas para el Medio Ambiente, PNUMA (2006).

    Google Scholar 

  4. A. R. El-Sayed, M. El Morsi and N. A. Mahmoud, A review of the potential replacements of HCFC, HFCs using environment-friendly refrigerants, Int. J. Air-Cond. Ref., 26 (2018) 1830002.

    Article  Google Scholar 

  5. P. Jadhav and N. Agrawal, Numerical study on choked flow of CO2 refrigerant in helical capillary tube, Int. J. Air-Cond. Ref., 26 (2018) 1850027.

    Article  Google Scholar 

  6. A. Kumar and Y. Neeraj, Performance analysis of refrigerants R1234yf, R1234ze and R134a in ejector-based refrigeration cycle, Int. J. Air-Cond. Ref., 26 (2018) 1850026.

    Google Scholar 

  7. T. J. Wallington, M. P. Andersen and O. J. Nielsen, Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs), Chemosphere, 129 (2015) 135–141.

    Article  Google Scholar 

  8. B. An, F. Yang, K. Yang, Y. Duan and Z. Yang, pvT property of HFO-1234ze(E) in the gaseous phase, J. Chem. Eng. Data, 63 (2018) 2075–2080.

    Article  Google Scholar 

  9. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press (2004).

    Book  MATH  Google Scholar 

  10. G. D. Nicola, J. S. Brown, L. Fedele, M. Securo, S. Bobbo and C. Zilio, Subcooled liquid density measurements and pvt measurements in the vapor phase for 3,3,3-trifluoroprop-1-ene (R1243zf), Int. J. Refrig., 36 (8) (2013) 2209–2215.

    Article  Google Scholar 

  11. L. Fedele, J. S. Brown, L. Colla, A. Ferron, S. Bobbo and C. Zilio, Compressed liquid density measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf), J. Chem. Eng. Data, 57 (2012) 482–489.

    Article  Google Scholar 

  12. C. Kondou, R. Nagata, N. Nii, S. Koyama and Y. Higashi, Surface tension of low GWP refrigerants R1243zf, R1234ze(Z), and R1233zd(E), Int. J. Refrig., 53 (2015) 80–89.

    Article  Google Scholar 

  13. Y. Liu, X. Zhao, S. Lv and H. He, Isobaric heat capacity measurements for R1234yf from 303 to 373 K and pressures up to 12 MPa, J. Chem. Eng. Data, 62 (2017) 1119–1124.

    Article  Google Scholar 

  14. Y. Liu, X. Zhao, H. He and R. Wang, Heat capacity of R1234ze(E) at temperatures from 313 to 393 K and pressures up to 10 MPa, J. Chem. Eng. Data, 63 (2018) 113–118.

    Article  Google Scholar 

  15. C. C. Sampson, M. Kamson, M. G. Hopkins, P. L. Stanwix and E.F. May, Dielectric permittivity, polarizability and dipole moment of refrigerants R1234ze(E) and R1234yf determined using a microwave re-entrant cavity resonator, J. Chem. Thermodyn., 128 (2019) 148–158.

    Google Scholar 

  16. Q. Zhong, X. Dong, Y. Zhao, J. Wang, H. Zhang, H. Li and M. Gong, Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data of compressed liquid R1234yf, J. Chem. Thermodyn., 125 (2018) 86–92.

    Article  Google Scholar 

  17. J. S. Brown, C. Zilio and A. Cavallini, Thermodynamic properties of eight fluorinated olefins, Int. J. Refrig., 33 (2010) 235–241.

    Article  Google Scholar 

  18. A. N. Lai, Thermodynamic properties of HFO-1243zf and their application in study on a refrigeration cycle, Appl. Therm. Eng., 70 (2014) 1–6.

    Article  Google Scholar 

  19. J. M. Belmanflores, V. H. Rangelhernandez, S. Uson and C. Rubiomaya, Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system, Energy, 132 (2017) 116–125.

    Article  Google Scholar 

  20. C. Aprea, A. Greco, A. Maiorino and C. Masselli, The drop-in of HFC134a with HFO1234ze in a household refrigerator, Int. J. Therm. Sci., 127 (2018) 117–125.

    Article  Google Scholar 

  21. X. Y. Liu, Y. Zheng, L. H. Bai and M. G. He, Performance comparison of two absorption compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair, Energy Convers. Manag., 181 (2019) 319–330.

    Article  Google Scholar 

  22. Y. Sun, Y. Zhang, G. Di, X. Wang, J. M. Prausnitz and L. Jin, Vapor-liquid equilibria for R1234ze(E) and three imidazoliumbased ionic liquids as working pairs in absorption-refrigeration cycle, J. Chem. Eng. Data, 63 (2018) 3053–3060.

    Article  Google Scholar 

  23. J. S. Brown, C. Zilio, R. Brignoli and A. Cavallini, Thermophysical properties and heat transfer and pressure drop performance potentials of hydrofluoro-olefins, hydrochlorofluoroolefins, and their blends, HVACR Res., 20 (2014) 203–220.

    Article  Google Scholar 

  24. K. Salhi, M. Korichi and K. M. Ramadan, Thermodynamic and thermo-economic analysis of compression-absorption cascade refrigeration system using low-GWP HFO refrigerant powered by geothermal energy, Int. J. Refrig., 94 (2018) 214–229.

    Article  Google Scholar 

  25. T. Tanaka, H. Okamoto, K. Ueno, J. Irisawa, T. Otsuka, T. Noigami and R. Dobashi, Development of a new low-GWP refrigerant composed of HFO-1123 (trifluoroethylene), AIChE Annual Meeting (2014).

    Google Scholar 

  26. M. S. Alam and J. H. Jeong, Thermodynamic properties and critical parameters of HFO-1123 and its binary blends with HFC-32 and HFC-134a using molecular simulations, Int. J. Refrig., 104 (2019) 311–320.

    Article  Google Scholar 

  27. T. Hanada, Development Progress of Low-GWP Refrigerants AMOLEA® for R123, R245fa and R410A Alternatives, Chillventa, Nürnberg, Germany (2016).

    Google Scholar 

  28. M. Fukushima and M. Tasaka, Working Fluid for Heat Cycle and Heat Cycle Systems, Patent Application US 2016/0369147A1 (2016).

    Google Scholar 

  29. S. Nishidi, Working Medium for Heat Cycle, WO2016/114217 A1 (2016).

    Google Scholar 

  30. A. Mota-Babiloni, J. Navarro-Esbría, Á. Barragán-Cervera, F. Molés and B. Perisa, Analysis based on EU regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems, Int. J. Refrig., 52 (2015) 21–31.

    Article  Google Scholar 

  31. Y. Higashi and R. Akasaka, Measurements of thermodynamic properties for R1123 and R1123+ R32 mixture, 16th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA (2016).

    Google Scholar 

  32. Y. Higashi, N. Sakoda, M. A. Islam, Y. Takata, S. Koyama and R. Akasaka, Measurements of saturation pressures for trifluoroethene (R1123) and 3, 3, 3 Trifluoropropene (R1243zf), J. of Chem. Eng. Data, 63 (2018) 417–421.

    Article  Google Scholar 

  33. W. J. Lee, J. Y. Seo, J. Ko and J. H. Jeong, Non-equilibrium two-phase refrigerant flow at subcooled temperatures in an R600a refrigeration system, Int. J. Refrig., 70 (2016)148–156.

    Article  Google Scholar 

  34. K. Yasuoka and M. Matsumoto, Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid, J. of Chem. Phy., 109 (19) (1998) 8451–8462.

    Article  Google Scholar 

  35. L. Li, P. Ji and Y. Zhang, Molecular dynamics simulation of condensation on nanostructured surface in a confined space, Appl. Phys. A Mater., 122 (2016) 496.

    Article  Google Scholar 

  36. A. Borner, Z. Li and D. A. Levin, Development of a moleculardynamics-based cluster heat capacity model for study of homogeneous condensation in supersonic water vapor expansions, J. Chem. Phys., 138 (2013) 064302.

    Article  Google Scholar 

  37. M. J. E. Muitjens, Homogeneous Condensation in a Vapor/Gas Mixture at High Pressures in an Expansion Cloud Chamber, Technische Universiteit Eindhoven (1996).

    Google Scholar 

  38. S. Yang, S. Yoon and S. Kwon, Atomistic molecular dynamics simulation study on thermomechanical properties of poly (1, 3, 5-trimethyl-1, 3, 5-trivinyl cyclotrisiloxane) dielectric insulator for soft electronics, Journal of Mechanical Science and Technology, 32 (2018) 2183–2189.

    Article  Google Scholar 

  39. M. S. Alam and J. H. Jeong, Molecular dynamics simulation on homogeneous condensation of R600a refrigerant, J. Mol. Liq., 261 (2018) 492–502.

    Article  Google Scholar 

  40. M. S. Alam and J. H. Jeong, Comparative molecular dynamics simulations of homogeneous condensation of refrigerants, Int. J. of Thermal Sci., 141 (2019) 187–198.

    Article  Google Scholar 

  41. M. S. Alam and J. H. Jeong, Calculation of the thermodynamic properties of R448A and R449A in a saturation temperature range of 233.15 K to 343.15 K using molecular dynamics simulations, Int. Comm. In Heat and Mass Transfer, 116 (2020) 104717.

    Article  Google Scholar 

  42. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds, The J. of Phy. Chem. B, 102 (1998) 7338–7364.

    Article  Google Scholar 

  43. H. Sun, Z. Jin, C. Yang, R. L. C. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller and S. M. Todd, COMPASS II: extended coverage for polymer and drug-like molecule databases, J. of Mol. Modeling, 22 (2016) 47.

    Article  Google Scholar 

  44. BIOVIA, Materials Studio, Accelrys Software Inc., San Diego, CA, USA (2010).

    Google Scholar 

  45. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, New York (1987).

    MATH  Google Scholar 

  46. D. Frenkel and B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, Academic Press, San Diego (2002).

    MATH  Google Scholar 

  47. M. Waldman and A. T. Hagler, New combining rules for rare gas van der waals parameters, J. of Comp. Chem., 14 (1993) 1077–1084.

    Article  Google Scholar 

  48. P. H. Hünenberger, Thermostat Algorithms for Molecular Dynamics Simulations, in Advanced Computer Simulation Approaches for Soft Matter Sciences I, Springer, Berlin, Heidelberg (2005) 105–149.

    Google Scholar 

  49. H. J. C. Berendsen, J. P. M. Postma, W. F. V. Gunsteren, A. DiNola and J. R. Haak, Molecular dynamics with coupling to an external bath, The J. of Chem. Phy., 81 (1984) 3684–3690.

    Article  Google Scholar 

  50. B. Leimkuhler, E. Noorizadeh and F. Theil, A gentle stochastic thermostat for molecular dynamics, J. Stat. Phys., 135 (2009) 261–277.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Bajars, J. Frank and B. Leimkuhler, Stochastic-dynamical thermostats for constraints and stiff restraints, Eur. Phys. J.: Spec. Top., 200 (2011) 131–152.

    Google Scholar 

  52. A. A. Samoletov, C. P. Dettmann and M. A. Chaplain, Thermostats for “slow” configurational modes, J. Stat. Phys., 128 (2007) 1321–1336.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. W. Lemmon, M. L. Huber and M. O. McLinder, Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, NIST standard Reference Database, USA (2013).

    Google Scholar 

  54. M. S. Alam and J. H. Jeong, Analysis of phase transition, structural and dynamical properties of R290 using molecular dynamics simulation, Journal of Mechanical Science and Technology, 34 (2020) 4345–4353.

    Article  Google Scholar 

  55. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd Edition, Academic Press, London (1990).

    MATH  Google Scholar 

  56. J. Zeng, Y. Zhang, Y. Dai and S. Chen, Molecular dynamics simulation of nitrobenzene in heterocyclic ionic liquids, J. Mol. Liq., 198 (2014) 274–279.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hwan Jeong.

Additional information

Ji Hwan Jeong is a Professor of the School of Mechanical Engineering at Pusan National University in Busan, Korea. He received his Bachelor’s degree in Nuclear Engineering from Seoul National University in 1988 and his master’s degree and Ph.D. in nuclear engineering from KAIST in 1990 and 1995. His research interests include heat transfer augmentation, heat exchangers, refrigeration, and heat pump.

Md. Sarwar Alam is a Professor of the Department of Mathematics at Jagannath University in Dhaka, Bangladesh. He received his Bachelor’s degree and Master’s degree in Mathematics from Dhaka University in 1998 and 2000. He received his Ph.D. in Applied Mathematics from Bangladesh University of Engineering and Technology. He was a Post-doctor in the School of Mechanical Engineering at Pusan National University in Busan, Korea. His research interests include MD simulations, thermodynamic properties and condensations process of working fluids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.S., Jeong, J.H. Molecular dynamics simulations of homogeneous condensation and thermophysical properties of HFO1123 and its binary blends with HFC134a at 273.15 K to 298.15 K. J Mech Sci Technol 35, 2247–2258 (2021). https://doi.org/10.1007/s12206-021-0441-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0441-3

Keywords

Navigation