Skip to main content
Log in

A Gentle Stochastic Thermostat for Molecular Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss a dynamical technique for sampling the canonical measure in molecular dynamics. We present a method that generalizes a recently proposed scheme (Samoletov et al., J. Stat. Phys. 128:1321–1336, 2007), and which controls temperature by use of a device similar to that of Nosé dynamics, but adds random noise to improve ergodicity. In contrast to Langevin dynamics, where noise is added directly to each physical degree of freedom, the new scheme relies on an indirect coupling to a single Brownian particle. For a model with harmonic potentials, we show under a mild non-resonance assumption that we can recover the canonical distribution. In spite of its stochastic nature, experiments suggest that it introduces a relatively weak perturbative effect on the physical dynamics, as measured by perturbation of temporal autocorrelation functions. The kinetic energy is well controlled even in the early stages of a simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth, E., Leimkuhler, B., Sweet, C.: Approach to thermal equilibrium in biomolecular simulation. Lect. Notes Comput. Sci. Eng. 49, 125–140 (2005)

    Article  Google Scholar 

  2. Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. U.S.A. 17(12), 656 (1931)

    Article  ADS  Google Scholar 

  3. Bond, S.D., Leimkuhler, B.J.: Molecular dynamics and the accuracy of numerically computed averages. Acta Numer. 16, 1–65 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bou-Rabee, N., Owhadi, H.: Boltzmann-Gibbs preserving stochastic variational integrator (2007). http://arxiv.org/abs/0712.4123

  5. Brünger, A., Brooks, C.B., Karplus, M.: Stochastic boundary conditions for molecular dynamics simulations of st2 water. J. Chem. Phys. Lett. 105(5), 495–500 (1984)

    Article  ADS  Google Scholar 

  6. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014,101 (2007)

    Article  Google Scholar 

  7. Evans, D., Holian, B.: The Nosé-Hoover thermostat. J. Chem. Phys. 83, 4069–4074 (1985)

    Article  ADS  Google Scholar 

  8. Hairer, M., Mattingly, J.: Ergodicity of the 2d Navier-Stokes equations with degenerate stochastic forcing. Ann. Math. 164(3) (2006)

  9. Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians. Springer, New York (2005)

    MATH  Google Scholar 

  10. Hoover, W.: Canonical dynamics: equilibrium phase space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  ADS  Google Scholar 

  11. Hoover, W.G.: Molecular Dynamics. Springer, New York (1986)

    Google Scholar 

  12. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, New York (1985)

    Google Scholar 

  13. Ingrassia, S.: On the rate of convergence of the metropolis algorithm and Gibbs sampler by geometric bounds. Ann. Appl. Probab. 4(2), 347–389 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaczmarski, M., Rurali, R., Hernández, E.: Reversible scaling simulations of the melting transition in silicon. Phys. Rev. B 69, 214,105 (2004)

    Article  Google Scholar 

  15. Khinchin, A.I.: Mathematical Foundations of Statistical Physics. Dover, New York (1949)

    Google Scholar 

  16. Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184, 449–463 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Martyna, G.J., Klein, M.L., Tuckerman, M.: Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97(4), 2635–2643 (1992)

    Article  ADS  Google Scholar 

  18. Mattingly, J.C., Stuart, A.M.: Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Markov Processes Relat. Fields 8(2), 199–214 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101(2), 185–232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Melchionna, S.: Design of quasisymplectic propagators for Langevin dynamics. J. Chem. Phys. 127, 044,108 (2007)

    Article  Google Scholar 

  21. Meyn, S.P., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, London (1993)

    MATH  Google Scholar 

  22. Milstein, G., Tretyakov, N.: Quasi-symplectic methods for Langevin-type equations. IMA J. Numer. Anal. 23(3), 593–626 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Norris, J.: Simplified Malliavin calculus. In: Séminaire de Probabilités XX 1984/85. Lecture Notes in Mathematics, pp. 101–130. Springer, Berlin (1986)

    Chapter  Google Scholar 

  24. Nosé, S.: A unified formulation of the constant temperature molecular dynamics method. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  25. Penrose, O.: Foundations of Statistical Mechanics: a Deductive Treatment. Pergamon, Elmsford (1970)

    MATH  Google Scholar 

  26. Petersen, K.: Ergodic Theory. Cambridge Studies in Advanced Mathematics, vol. 2. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  27. Quigley, D., Probert, M.: Langevin dynamics in constant pressure extended systems. J. Chem. Phys. 120, 11432 (2004)

    Article  ADS  Google Scholar 

  28. Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin diffusions and their discrete approximations. Bernoulli 2(4), 341–363 (1995)

    Article  MathSciNet  Google Scholar 

  29. Rosenthal, J.: Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Am. Stat. Assoc. 90(430), 558–566 (1995)

    Article  MATH  Google Scholar 

  30. Samoletov, A., Chaplain, M.A.J., Dettmann, C.P.: Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Skeel, R.D., Izaguirre, J.A.: An impulse integrator for Langevin dynamics. Mol. Phys. 100, 3885 (2002)

    Article  ADS  Google Scholar 

  32. Vanden-Eijnden, E., Ciccotti, G.: Second-order integrators for Langevin equations with holonomic constraints. Chem. Phys. Lett. 429, 310–316 (2006)

    Article  ADS  Google Scholar 

  33. Villani, C.: Topics in optimal transportation. Am. Math. Soc. 58 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Leimkuhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leimkuhler, B., Noorizadeh, E. & Theil, F. A Gentle Stochastic Thermostat for Molecular Dynamics. J Stat Phys 135, 261–277 (2009). https://doi.org/10.1007/s10955-009-9734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9734-0

Keywords

Navigation