Skip to main content
Log in

Design of piezoelectric energy harvesting structures using ceramic and polymer materials

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Piezoelectric sensors are designed in this work to power implantable medical devices (IMDs). A prosthetic hand is used as the IMD in this study. E, Π, and T piezoelectric structures are designed using five ceramic (PZT-5H, PZT-4D, BaTiO3, ZnO, and GaAs) and five polymer (Hytrel 3078, polyetherimide [ULTEM 2100], polyoxymethylene [POM], polyvinylenedifluoride [PVDF, Kynar 710], and Elvax 260) materials. Further analysis is carried out using square and rectangular-shape proof masses under different load conditions. This study aims to determine the maximum power that can be used from the piezoelectric harvester to supply energy to a medical device, such as the prosthetic hand. Structure and material analyses showed that the maximum power generated by the E structure using ceramic material (PZT-5H) with rectangular-shape proof mass ensures the efficient powering of the IMD. The simulation is carried out using COMSOL Multiphysics 5.3a software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. El-Sayed, K. Tai, M. Biglarbegian and S. Mahmud, A survey on recent energy harvesting mechanisms, Proc. of IEEE Canadian Conference on Electrical Engineering, Canada (2016) 1–5.

  2. S. Park, S. K. Hong, T. H. Lee, K. Kang and S. Cho, Optimal design of PZT-based piezoelectric energy harvesting module for availability, J. Mech. Sci. Technol., 33(3) (2019) 1211–1218.

    Article  Google Scholar 

  3. M. A. Hannan, S. Mutashar and S. A. Samad, Energy harvesting for the implantable biomedical devices: issues and challenges, BioMed. Eng OnLine, 79 (2014) 1–23.

    Google Scholar 

  4. D. Jiang, B. Shi, H. Quang, Y. Fan, Z. L. Wang and Z. Li, Emerging implantable energy harvesters and self-powered implantable medical electronics, ACS Nano (2020) 1–35.

  5. A. B. Amar, A. B. Kouki and H. Cao, Power approaches for implantable medical devices, Sensors, 15(11) (2015) 28889–28914.

    Article  Google Scholar 

  6. R. Fan, S. Lee, H. Jung, M. A. Melo and R. Masri, Piezoelectric energy harvester utilizing mandibular deformation to power implantable biosystems: a feasibility study, J. Mech. Sci. Technol., 33(8) (2019) 4039–4045.

    Article  Google Scholar 

  7. R. Kumar, MoCo: Mind Control Prosthesis Arm Using Novel Neuromyoelectric Pulses, https://innovate.mygov.in.

  8. G. T. Hwang, M. Byun, C. K. Jeong and K. J. Lee, Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications, Journal of Adv. Healthcare Mater., 4(5) (2015) 646–658.

    Article  Google Scholar 

  9. J. R. Curran and J. A. Galster, The master hearing aid, Trends in Amplification, 17(2) (2013) 108–134.

    Article  Google Scholar 

  10. M. B. Khan, D. H. Kim and J. K. Han, Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit, Nano Energy, 58 (2019) 211–219.

    Article  Google Scholar 

  11. A. Spiride, Piezo power: noninvasive wireless energy transfer for implantable medical devices, AAAS Annual Meeting, Boston, USA (2017).

  12. A. Kim, M. Ochoa, R. Rahimi and B. Ziaie, New and emerging energy sources for implantable wireless microdevices, IEEE Access, 3 (2015) 89–98.

    Article  Google Scholar 

  13. K. Uchino, Advanced Piezoelectric Materials, 2nd Ed., Wood-head Publishing Limited, Pennsylvania State University, USA (2010).

    Book  Google Scholar 

  14. S. Sunithamani, P. Lakshmi and E. EbaFlora, Simulation and optimization of MEMS piezoelectric energy harvester with a non-traditional geometry, Proc. of COMSOL Conference, Bangalore (2012).

  15. S. Sunithamani, P. Lakshmi and E. EbaFlora, PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: simulation study, Microsyst Technol., 20(12) (2014) 2165–2171.

    Article  Google Scholar 

  16. E. E. Flora, S. Sunithamani and P. Lakshmi, Simulation of MEMS energy harvester with different geometries and cross sections, Proc. of IEEE-ICT, India (2013) 120–123.

  17. S. Sunithamani and P. Lakshmi, Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio, Microsyst Technol., 21(4) (2015) 733–738.

    Article  Google Scholar 

  18. S. Sunithamani and P. Lakshmi, Experimental study and analysis of unimorph piezoelectric energy harvester with different substrate thickness and different proof mass shapes, Microsyst Technol., 23(7) (2017) 2421–2430.

    Article  Google Scholar 

  19. J. Song, G. Zhao, B. Li and J. Wang, Design optimization of PVDF-based piezoelectric energy harvesters, Heliyon, 3(9) (2017) 1–18.

    Article  Google Scholar 

  20. R. Sriramdas, S. Chiplunkar, R. M. Cuduvally and R. Pratap, Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations, IEEE Sens. J., 15(6) (2015) 3338–3348.

    Article  Google Scholar 

  21. S. Park, Y. Kim, H. Jung, J. Y. Park, N. Lee and Y. Seo, Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes, Sci. Rep. (2017) 1–8.

  22. S. Saxena, R. Sharma and B. D. Pant, Fabrication and sensitivity analysis of guided beam piezoelectric energy harvester, IEEE Trans. Electron Devices, 65(11) (2018) 5123–5129.

    Article  Google Scholar 

  23. S. Pang, W. Li and J. Kan, Optimization analysis of interface circuits in piezoelectric energy harvesting systems, Journal of Power Technologies, 96(1) (2016) 1–7.

    Google Scholar 

  24. T. H. Ng and W. H. Liao, Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor, J. Intell. Mater. Syst. Struct., 16 (2005) 785–797.

    Article  Google Scholar 

  25. Z. H. Zhang, J. W. Kana, X. C. Yu, S. Y. Wang, J. J. Ma and Z. X. Cao, Sensitivity enhancement of piezoelectric force sensors by using multiple piezoelectric effects, AIP Advances, 6 (7) (2016).

  26. R. Carter and R. Kensley, Introduction to Piezoelectric Transducers, https://piezo.com.

  27. Polymer industries technical data sheets, MatWeb Material Property Data, http://www.matweb.com.

  28. J. Arunguvai and P. Lakshmi, Flexible nano-vibration energy harvester using three-phase polymer composites, J. Mater. Sci: Mater. Electron., 31 (2020) 8283–8290.

    Google Scholar 

  29. P. Graak, A. Gupta, S. Kaur, P. Chhabra, D. Kumar and A. Shetty, Design and simulation of various shapes of cantilever for piezoelectric power generator by using comsol, Proc. of COMSOL Conference, Bangalore (2015).

  30. A. H. Meitzler, Additional comments on ieee standard on piezoelectricity 176–1978, IEEE Trans. Sonics Ultrason., 32(4) (1985) 610–611.

    Article  Google Scholar 

  31. M. Serridge and T. R. Licht, Piezoelectric Accelerometer and Vibration Preamplifier Handbook, K. Larsen and Sen A/S. DK. 2600 Glostrup, Denmark (1987).

    Google Scholar 

  32. Y. Popat, S. Sharma, H. Kishnani and G. Sachdev, Energy efficient lighting for railway tunnels in india, International Journal of Scientific and Engineering Research, 4(6) (2013) 1846–1849.

    Google Scholar 

  33. A. A. Athavale, An analytical model for piezoelectric unimorph cantilever subjected to an impulse load, M.S. Thesis, Graduate School-New Brunswick Rutgers, The State Univ. of New Jersey, USA (2015).

    Google Scholar 

  34. F. H. A. Salem, K. S. Mohamed, S. B. K. Mohamed and A. A. El Gehani, The development of body-powered prosthetic hand controlled by emg signals using dsp processor with virtual prosthesis implementation, Proc. of International Conference on Electrical and Computer Engineering, Benghazi, Libya (2013) 1–8.

  35. T. Inglis, 3D Printed Prosthetic Hand with Intelligent EMG Control, Carleton University, Ottawa, Ontario, Canada (2013).

    Google Scholar 

  36. D. P. Fisher, Sensational prosthesis: prosthetic hand with nearly human capabilities, Yale Scientific Magazine (2019) https://www.yalescientific.org.

  37. M. M. D. Sobuh, L. P. J. Kenney, A. J. Galpin, S. B. Thies, J. M. Laughlin, J. Kulkarni and P. Kyberd, Visuomotor behaviours when using a myoelectric Prosthesis, J. Neuroeng. Rehabil. (2014) 1–11.

  38. W. G. Ali and S. W. Ibrahim, Power analysis for piezoelectric energy harvester, Energy and Power Engineering, 4(6) (2012) 496–505.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mangaiyarkarasi.

Additional information

Recommended by Editor Chongdu Cho

P. Mangaiyarkarasi received her B.E. degree in Electrical and Electronics Engineering and M.E. degree in Power Systems Engineering from Anna University, Chennai, Tamil Nadu, India in 2015 and 2017, respectively. She is currently pursuing her Ph.D. in the Department of EEE at the same university. Her research interests include modeling and design of piezoelectric energy harvesters for biomedical applications.

P. Lakshmi received her B.E. degree from Government College of Technology, Coimbatore and M.E. and Ph.D. from Anna University, Chennai. She is a Professor at the EEE Department of Anna University, Chennai, Tamil Nadu, India. Her research interests include MEMS technology, hybrid controllers, process control, and power system stability.

V. Sasrika received her B.E. degree in Electronics and Instrumentation Engineering from Madras Institute of Technology, Chennai, Tamil Nadu, India in 2017. She received her M.E. degree from Anna University, Chennai in 2019. Her research interests include piezoelectric materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangaiyarkarasi, P., Lakshmi, P. & Sasrika, V. Design of piezoelectric energy harvesting structures using ceramic and polymer materials. J Mech Sci Technol 35, 1407–1419 (2021). https://doi.org/10.1007/s12206-021-0307-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0307-8

Keywords

Navigation