Skip to main content
Log in

Piezoelectric energy-harvesting devices for wearable self-powering system

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

Development of low-power sensors and high-capacity storage devices is necessary for an acquiring physical movement and medical data in real-time. Particularly, by applying technologies to harvest mechanical energy from physical movement, it will become possible to sustain operation of wearable devices and provide a broader range of functions. However, conventional piezoelectric harvesting technologies are limited in their ability, and technological advances are needed for these to serve sufficiently as harvesters for wearable devices. A host of research is ongoing on flexible piezoelectric films and materials, as well as frequency up-conversion and automatic resonance tuning. That said, a number of technical hurdles still remain for use of these technologies in wearable devices. Current size and material limitations obstruct normal human movement, and some harvesters have limited feasibility and reliability. Whereas current piezoelectric energy harvesters have insufficient efficiency in terms of electrical power supply, continued advances in this technical field will open up possibilities for harvesting and conversion of mechanical energy sources across numerous areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Glynne-Jones, N.M. White, Self-powered systems: a review of energy sources. Sens. Rev. 21(2), 91–98 (2001)

    Article  Google Scholar 

  2. M. Stordeur and S. Ingo, Low power thermoelectric generator-self-sufficient energy supply for micro systems, XVI ICT'97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291) IEEE, 1997.

  3. U. Kaiser, W. Steinhagen, A low power transponder IC for high-performance identification systems. IEEE J. of Solid-State Circuits 30(3), 306–310 (1995)

    Article  Google Scholar 

  4. S. Liu, J. Zhang, Y. Zhang, R. Zhu, A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun. 11(1), 5615 (2020)

    Article  Google Scholar 

  5. C.B. Williams, C. Shearwood, M.A. Harradine, P.H. Mellor, T.S. Birch, R.B. Yates, Development of an electromagnetic micro-generator. IEEE Proc. Circuits Devices Syst. 148(6), 337–342 (2001)

    Article  Google Scholar 

  6. R. Amirtharajah, A.P. Chandrakasan, Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circuits 33(5), 687–695 (1998)

    Article  Google Scholar 

  7. H.G. Yeo, S. Trolier-McKinstry, Effect of piezoelectric layer thickness and poling conditions on the performance of cantilever piezoelectric energy harvesters on Ni foils. Sens. Actuators A 273, 90–97 (2018)

    Article  Google Scholar 

  8. C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for Microsystems. Sens. Actuators A 52(1–3), 8–11 (1996)

    Article  Google Scholar 

  9. K. Ishida, T.C. Huang, K. Honda, Y. Shinozuka, H. Fuketa, T. Yokota, U. Zschieschang, H. Klauk, G. Tortissier, T. Sekitani, H. Toshiyoshi, M. Takamiya, T. Someya, T. Sakurai, Insole pedometer with piezoelectric energy harvester and 2 V organic circuits. IEEE J. Solid-State Circuits 48(1), 255–264 (2012)

    Article  Google Scholar 

  10. N.S. Shenck, J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3), 30–42 (2001)

    Article  Google Scholar 

  11. H. G. Yeo, Mechanical energy harvesting utilizing {001} textured PZT films on flexible metal foils, Doctoral dissertation, (2017) The Pennsylvania State University.

  12. L. Dhakar, H. Liu, F.E.H. Tay, C. Lee, A new energy harvester design for high power output at low frequencies. Sens. Actuators A 199, 344–352 (2013)

    Article  Google Scholar 

  13. A. Wilson, C.D. Rahn, S. Trolier-McKinstry, (2016) Efficient energy harvesting using piezoelectric compliant mechanisms: theory and experiment. J. Vib. Acoust. 138(2), 021005 (2016)

    Article  Google Scholar 

  14. X. Chen, H. Tian, X. Li, J. Shao, Y. Ding, N. An, Y. Zhou, A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale 7(27), 11536–11544 (2015)

    Article  Google Scholar 

  15. I. Chinya, A. Sasmal, S. Sen, Conducting polyaniline decorated in-situ poled Ferrite nanorod-PVDF based nanocomposite as piezoelectric energy harvester. J. Alloy. Compd. 815, 152312 (2020)

    Article  Google Scholar 

  16. T. Suzuki, I. Kanno, Characterization of Pb (Zr, Ti)O3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications. Sens. Actuators A 125, 382 (2006)

    Article  Google Scholar 

  17. G. Hwang, V. Annapureddy, H. Jae, J. Daniel, C. Baek, Y. Dae, H. Dong, H. Jung, K. Chang, K. Park, J. Choi, K. Do, J. Ryu, J. Keon, Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6(13), 1600237 (2016)

    Article  Google Scholar 

  18. Y. Chen, Y. Zhang, L. Zhang, F. Ding, O.G. Schmidt, Scalable single crystalline PMN-PT nanobelts sculpted from bulk for energy harvesting. Nano Energy 31, 239–246 (2017)

    Article  Google Scholar 

  19. J. Kwon, W. Seung, B.K. Sharma, S.W. Kim, J.H. Ahn, A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5(10), 8970–8975 (2012)

    Article  Google Scholar 

  20. G.T. Hwang, H. Park, J.H. Lee, S. Oh, K.I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, H. Kwon, S.-G. Lee, B. Joung, K.J. Lee, Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26(28), 4880–4887 (2014)

    Article  Google Scholar 

  21. M. Wu, Y. Ou, H. Mao, Z. Li, R. Liu, A. Ming, W. Ou, Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever. AIP Adv. 5(7), 077149 (2015)

    Article  Google Scholar 

  22. X. Ruize, Low-frequency, low-amplitude MEMS vibration energy harvesting, Doctoral dissertation, (2018) Massachusetts Institute of Technology.

  23. K. Fan, J. Chang, F. Chao, W. Pedrycz, Design and development of a multipurpose piezoelectric energy harvester. Energy Convers. Manage. 96, 430–439 (2015)

    Article  Google Scholar 

  24. P. Pillatsch, E.M. Yeatman, A.S. Holmes, A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens. Actuators A 206, 178–185 (2014)

    Article  Google Scholar 

  25. L.M. Miller, P. Pillatsch, E. Halvorsen, P.K. Wright, E.M. Yeatman, A.S. Holmes, Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. J. Sound Vib. 332(26), 7142–7152 (2013)

    Article  Google Scholar 

  26. Y.-H. Shin, J. Choi, S.J. Kim, S. Kim, D. Maurya, T.H. Sung, S. Priya, C.Y. Kang, Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting. Nano Energy 77, 104986 (2020)

    Article  Google Scholar 

  27. H.G. Yeo, T. Xue, S. Roundy, X. Ma, C. Rahn, S. Trolier-McKinstry, Strongly (001) oriented bimorph PZT film on metal foils grown by rf-sputtering for wrist-worn piezoelectric energy harvesters. Adv. Func. Mater. 28(36), 1801327 (2018)

    Article  Google Scholar 

  28. M. Pozzi, M. Zhu, Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications. Smart Mater. Struct. 21(5), 055004 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Goo Yeo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, H.G. Piezoelectric energy-harvesting devices for wearable self-powering system. JMST Adv. 5, 37–43 (2023). https://doi.org/10.1007/s42791-023-00053-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-023-00053-x

Keywords

Navigation