Skip to main content

Advertisement

Log in

Artificial human joint for the characterization of piezoelectric transducers in self-powered telemedicine applications

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper introduces an artificial human joint working as testing machine for the experimental characterization of piezoelectric transducers for wearable applications. The diffusion of portable medical devices and low-power communication systems for telemedicine and telehealth is leading to the development of self-powered diagnostic systems supplied by small wearable generators. Laboratory tests are needed before the validation on human body for instance, to measure electric outputs, material properties and transducers reliability, as well as dedicated test benches must be designed and built. This work contributes to define experimental methodologies and test benches for the characterization of materials and electro-mechanical response of piezoelectric transducers. The proposed testing machine contributes to improve the effectiveness of harvesters design by providing preliminary data about performances, endurance and reliability. The same data are not easy to obtain from direct tests on the body due to the long test duration and the high repeatability and accuracy in imposing the movements. Additionally, the managing and control of multiple testing parameters is also needed, e.g. in design-of-experiments approaches. The functionality of the testing machine, which has been previously designed and built, has been proved with some qualitative measurements on piezo foil transducers coated with polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Teng XF, Zheng YT, Poon CC, Bonato P (2008) Wearable medical systems for p-health. IEEE Rev Biomed Eng 1:62–74

    Article  Google Scholar 

  2. Yoo J, Yan L, Lee S, Kim Y, Yoo HJ (2010) A 5.2 mW self-configured wearable body sensor network controller and a 12 μW wirelessly powered sensor for a continuous health monitoring system. IEEE J Solid State Circ 45:178–188

    Article  Google Scholar 

  3. Clanaman S (2013) MEMS medical gadgets for Obamacare impress CES visitors. MEMS J. www.memsjournal.com

  4. Halperin D, Kohno T, Heydt-Benjamin TS, Fu K, Maisel WH (2008) Security and privacy for implantable medical devices. IEEE Pervasive Comput 7:30–39

    Article  Google Scholar 

  5. De Pasquale G (2015) Biomechanical energy harvesting: design, testing and future trends in healthcare and human-machines interfacing. In: Mescia L, Losito O, Prudenzano F, IGI Global (eds) Innovative materials and systems for energy harvesting applications, Chapter 11, pp 290–340

  6. Mitcheson PD, Yeatman EY, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion from wireless electronic devices. Proc IEEE 96:1457–1486

    Article  Google Scholar 

  7. De Pasquale G, Somà A, Fraccarollo F (2013) Comparison between piezoelectric and magnetic strategies for wearable energy harvesting. J Phys Conf Ser 476:012097

    Article  ADS  Google Scholar 

  8. Cadei A, Dionisi A, Sardini E, Serpelloni M (2014) Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors. Meas Sci Technol 25:012003

    Article  ADS  Google Scholar 

  9. Platt S, Farritor S, Garvin K, Haider H (2005) The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE ASME T Mech 10:455–461

    Article  Google Scholar 

  10. Cavallier B, Berthelot P, Nouira H, Foltete E, Hirsinger L, Ballandras S (2005) Energy harvesting using vibrating structures excited by shock. IEEE Ultrason Symp 2:943–945

    Google Scholar 

  11. Platt S, Farritor S, Haider H (2005) On low-frequency electric power generation with PZT ceramics. IEEE ASME T Mech 10:240–252

    Article  Google Scholar 

  12. Naruse Y, Matsubara N, Mabuchi K, Izumi M, Suzuki S (2009) Electrostatic micro power generation from low-frequency vibration such as human motion. J Micromech Microeng 19(9):094002

    Article  Google Scholar 

  13. Lewandowski B, Kilgore K, Gustafson K (2007) Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Ann Biomed Eng 35:631–641

    Article  Google Scholar 

  14. Potkay J, Brooks K (2008) An arterial cuff energy scavenger for implanted microsystems. In: International conference on bioinformatics and biomedical engineering, pp 1580–1583

  15. Chen H, Liu M, Cand J, Wang Z (2009) Power harvesting using PZT ceramics embedded in orthopedic implants. IEEE Trans Ultrason Ferroelectr Freq Control 56:2010–2014

    Article  Google Scholar 

  16. Almouahed S, Gouriou M, Hamitouche C, Stindel E, Roux C (2010) Self-powered instrumented knee implant for early detection of postoperative complications. In: Conference of the IEEE: engineering in medicine and biology society, pp 5121–5124

  17. Lahuec C, Almouahed S, Arzel M, Gupta D, Hamitouche C, Jézéquel M, Stindel E, Roux C (2011) A self-powered telemetry system to estimate the postoperative instability of a knee implant. IEEE Trans Biomed Eng 58:822–825

    Article  Google Scholar 

  18. De Pasquale G, Somà A (2013) Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors. In: Proceedings of DTIP, pp 79–84

  19. De Pasquale G, Kim SG, De Pasquale D (2015) GoldFinger: wireless human-machine interface with dedicated software and biomechanical energy harvesting system. IEEE ASME T Mech, p 99

  20. Goto H, Sugiura T, Kazui T (1998) Feasibility of the automatic generating system (AGS) for quartz watches as a leadless pacemaker power source: a preliminary report. Eng Med Biol Soc 1:417–419

    Google Scholar 

  21. Priya S, Inman DJ (2008) Energy harvesting technologies. Springer, London

    Google Scholar 

  22. Bianco M, Deyoung PD, Irani A, Li TH, Tran D and Wyld ML (2009) Energy generating systems for implanted medical devices. US patent 20090171404

  23. Romero E, Warrington RO, Neuman MR (2009) Body motion for powering biomedical devices. In: Conference of proceedings of IEEE: engineering in medicine and biology society, pp 2752–2755

  24. Nasiri A, Zabalawi SA, Jeutter DC (2011) A linear permanent magnet generator for powering implanted electronic devices. IEEE Trans Power Electron 26:192–199

    Article  Google Scholar 

  25. Morais R, Silva NM, Santos PM, Frias CM, Ferreira JA, Ramos AM, Simoes JA, Baptista JM, Reis MC (2011) Double permanent magnet vibration power generator for smart hip prosthesis. Sens Actuators A Phys 172:259–268

    Article  Google Scholar 

  26. Luciano V, Sardini E, Serpelloni M and Baronio G (2012) Analysis of an electromechanical generator implanted in a human total knee prosthesis. IEEE sensors applications symposium, pp 1–5

  27. Rao Y, McEachern M, Arnold DP (2013) A compact human-powered energy harvesting system. J Phys Conf Ser 476:012011

    Article  ADS  Google Scholar 

  28. Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Proceedings of IEEE international symposium on wearable comput, pp 132–139

  29. Siores E, Swallow L (2006) Apparatus for the detection and suppression of muscles tremors. UK patent GB-2444393-A

  30. Granstrom J, Feenstra J, Sodano HA, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16:1810–1820

    Article  ADS  Google Scholar 

  31. Li Q, Naing V, Donelan JM (2009) Development of a biomechanical energy harvester. J Neuroeng Rehabil 6:22

    Article  Google Scholar 

  32. Pozzi M, Zhu M (2011) Pizzicato excitation for wearable energy harvesters. SPIE Newsroom. doi:10.1117/2.1201104.003682

    Google Scholar 

  33. Leonov V (2011) Energy harvesting for self-powered wearable devices. In: Bonfiglio A, De Rossi D (eds) Wearable monitoring systems. Springer, New York

    Google Scholar 

  34. Yang B, Yun KW (2012) Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement. Sensor Actuators A Phys 188:427–433

    Article  Google Scholar 

  35. Zhang J, Wang C, Chen W (2014) Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads. Meccanica 49:181–189

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. In: Tan YK (ed) Sustainable energy harvesting technologies—past, present and future. Chapter 2. InTech Publisher, Janeza Trdine, Croatia, pp 25–54

  37. Bowers BJ, Arnold DP (2009) Spherical, rolling magnet generators for passive energy harvesting from human motion. J Micromech Microeng 19:094008

    Article  Google Scholar 

  38. Pellegrini SP, Tolou N, Schenk M, Herder JL (2012) Bistable vibration energy harvesters: a review. J Intell Material Syst Struct 24:1303–1312

    Article  Google Scholar 

  39. Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:165–182

    Google Scholar 

  40. Lee M, Chen CY, Wang S, Cha SN, Park YJ, Kim JM, Chou LJ, Wang ZL (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764

    Article  Google Scholar 

  41. Klimiec E, Zaraska W, Zaraska K, Gąsiorski KP, Sadowski T, Pajda M (2008) Piezoelectric polymer films as power converters for human powered electronics. Microelectron Reliab 48:897–901

    Article  Google Scholar 

  42. Niu P, Chapman P, Riemer R, Zhang X (2004) Evaluation of motions and actuation methods for biomechanical energy harvesting. In: IEEE 35th annual power electronics specialists conference, vol 3, pp 2100–2106

  43. Wong LS, Hossain S, Edvinsson J, Rivas DH, Naas H (2004) A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J Solid State Circ 39:2446–2456

    Article  Google Scholar 

  44. Arfin KS (2011) Low power circuits and systems for wireless neural stimulation. PhD Thesis, Massachusetts Institute of Technology

  45. Saati S, Lo R, Li PY, Meng E, Varma R, Humayun M (2010) Mini drug pump for ophthalmic use. Curr Eye Res 35:192–201

    Article  Google Scholar 

  46. Power muscle stimulator (EMS) FDA 510 k, Model: GM320E(c). www.apria.com

  47. Sarpeshkar R, Salthouse C, Ji-Jon S, Baker MW, Zhak SM, Turicchia L, Balster S (2005) An ultra-low-power programmable analog bionic ear processor. IEEE Trans Biomed Eng 52:711–727

    Article  Google Scholar 

  48. Riemer R, Shapiro A (2011) Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J Neuroeng Rehabil 8:22

    Article  Google Scholar 

  49. Romero E, Warrington RO, Neuman MR (2009) Energy scavenging sources for biomedical sensors. Physiol Meas 30:R35–R62

    Article  ADS  Google Scholar 

  50. Romero E, Neuman MR, Warrington RO (2011) Rotational energy harvester for body motion. Proc MEMS 2011:1325–1328

    Google Scholar 

  51. Sue CY, Tsai NC (2012) Human powered MEMS-based energy harvest devices. Appl Energy 93:390–403

    Article  Google Scholar 

  52. Pirola V (2003) Cinesiologia. Edi.Ermes Eds Milano, Italy

  53. Kilgore KL, Lauer RT, Peckham PH (1994) A transducer for measurement of finger joint torques. In: Proceedings of IEEE, pp 938–939

  54. Ngeo J, Tamei T, Shibata T (2012) Continuous estimation of finger joint angles using muscle activation inputs from surface EMG signals. In: Proceedings of IEEE EMBS, pp 2756–2759

  55. De Pasquale G (2013) Energy harvesters for powering wireless systems. In: Uttamchandani D (ed) Handbook of MEMS for wireless and mobile applications. Chapter 11. Woodhead Publishing, Cambridge, UK, 345–400

  56. Sugar T, Hitt JK, Boehler A, Hollander K, Ward JA (2011) Method and apparatus for harvesting energy from ankle motion. US patent number US20110278857A1

  57. www.advancedcerametrics.com

  58. www.physikinstrumente.com

  59. Hagood NW, von Floton A (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146(2):243–268

    Article  ADS  Google Scholar 

  60. Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE T Ultrason Ferr 52(4):584–595

    Article  Google Scholar 

  61. Renno JM, Daqaq MF, Inman DJ (2009) On the optimal energy harvesting from a vibration source. J Sound Vib 320:386–405

    Article  ADS  Google Scholar 

  62. Yu H, Zhou J, Deng L, Wen Z (2014) A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit. Sensors 14:3323–3341

    Article  Google Scholar 

  63. Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15:1413–1420

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio De Pasquale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Pasquale, G. Artificial human joint for the characterization of piezoelectric transducers in self-powered telemedicine applications. Meccanica 51, 2259–2275 (2016). https://doi.org/10.1007/s11012-016-0359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0359-5

Keywords

Navigation