Skip to main content
Log in

A molecular dynamics study on the biased propagation of intergranular fracture found in copper STGB

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Structural failure of the polycrystalline material is influenced by the interaction between the crystal and their boundaries. Specifically, a ductile material such as copper exhibit the different mechanisms of failure depending on the direction of the crack propagation within the grain boundary. Such directional anisotropy is often studied based on Rice’s criteria, which has the analytic solution in the grain boundary with [110] rotation of the axis. In this work, we expand the study of such intergranular directionality to a propagation within [100] grain boundary. This work introduces the inherent bias found in the intergranular fracture of [100] grain boundaries, using molecular dynamics simulations. Later, such observation is shown to agree with the relative crack propagation velocities, and cohesive energies obtained at the crack tip vicinity. These anisotropic trends are lastly correlated with the detailed atomistic movements observed during structural failures. These findings are to be used in improving the simulation capability and predictability of crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Spearot, K. I. Jacob and D. L. McDowell, Nucleation of dislocations from [001]_bicrystal interfaces in aluminum, Acta Mater., 53 (2005) 3579–3589.

    Article  Google Scholar 

  2. D. E. Spearot, K. I. Jacob and D. L. McDowell, Dislocation nucleation from bicrystal interfaces with dissociated structure, Int. J. Plast., 23 (2007) 143–160.

    Article  MATH  Google Scholar 

  3. D. E. Spearot, L. Capolungo, J. Qu and M. Cherkaoui, On the elastic tensile deformation of <100> bicrystal interfaces in copper, Comput. Mater. Sci., 42 (2008) 57–67.

    Article  Google Scholar 

  4. N. A. Fleck, J. W. Hutchinson and S. Zhigang, Crack path selection in a brittle adhesive layer, Int. J. Solids Struct., 27 (1991) 1683–170.

    Article  Google Scholar 

  5. A. Luque, J. Aldazabal, J. M. Martínez–Esnaola and J. Gil Sevillano, Molecular dynamics simulation of crack tip blunting in opposing directions along a symmetrical tilt grain boundary of copper bicrystal, Fatigue Fract. Eng. Mater. Struct., 30 (2007) 1008–1015.

    Article  Google Scholar 

  6. C. E. Carlton and P. J. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials?, Acta Mater., 55 (2007) 3749–3756.

    Article  Google Scholar 

  7. J.–S. Wang and P. M. Anderson, Fracture behavior of embrittled F.C.C. metal bicrystals, Acta Metall. Mater., 39 (1991) 779–792.

    Article  Google Scholar 

  8. J. D. Rittner and D. N. Seidman, <110> Symmetric tilt grain–boundary structures in Fcc metals with low stackingfault energies, Phys. Rev. B, 54 (1996) 6999–7015.

    Article  Google Scholar 

  9. Y. Cheng, Z. H. Jin, Y. W. Zhang and H. Gao, On intrinsic brittleness and ductility of intergranular fracture along symmetrical tilt grain boundaries in copper, Acta Mater., 58 (2010) 2293–2299.

    Article  Google Scholar 

  10. Y. Cheng, M. X. Shi and Y. W. Zhang, Atomistic simulation study on key factors dominating dislocation nucleation from a crack tip in two FCC materials: Cu and Al, Int. J. Solids Struct., 49 (2012) 3345–3354.

    Article  Google Scholar 

  11. M. A. Tschopp and D. L. Mcdowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium, Philos. Mag., 87 (2007) 3871–3892.

    Article  Google Scholar 

  12. T. Shimada, K. Ouchi, Y. Chihara and T. Kitamura, Breakdown of continuum fracture mechanics at the nanoscale, Sci. Rep., 5 (2015) 8596.

    Article  Google Scholar 

  13. I. Adlakha, M. A. Tschopp and K. N. Solanki, The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum, Mater. Sci. Eng. A, 618 (2014) 345–354.

    Article  Google Scholar 

  14. I. Adlakha, K. N. Solanki and M. A. Tschopp, Influence of grain boundary structure on interfacial fracture under tensile loading: Cohesive zone model informed by atomistic simulations, TMS2013 Supplemental Proceedings (2013) 753–758.

    Google Scholar 

  15. R. Abadi, R. Palanivel, M. Izadifar and T. Rabczuk, The effect of temperature and topological defects on fracture strength of grain boundaries in single–layer polycrystalline boron–nitride nanosheet, Comput. Mater. Sci., 123 (2016) 277–286.

    Article  Google Scholar 

  16. P. R. Budarapu, R. Gracie, S. Yang, X. Zhuang and T. Rabczuk, Efficient coarse graining in multiscale modeling of fracture, Theor. Appl. Fract. Mech., 69 (2014) 126–143.

    Article  Google Scholar 

  17. P. R. Budarapu, R. Gracie, S. P. A. Bordas and T. Rabczuk, An adaptive multiscale method for quasi–static crack growth, Compt. Mech., 53 (2014) 1129–1148.

    Article  Google Scholar 

  18. H. Talebi, M. Silani, S. P. A. Bordas, P. Kerfriden and T. Rabczuk, A computational library for multiscale modeling of material failure, Comput. Mech., 53 (2014) 1047–1071.

    Article  MathSciNet  Google Scholar 

  19. H. Talebi, M. Silani and T. Rabczuk, Concurrent multiscale modeling of three dimensional crack and dislocation propagation, Adv. Eng. Softw., 80 (2015) 82–92.

    Article  Google Scholar 

  20. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter and J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight–binding, and embedded–atom calculations, Phys. Rev. B, 63 (2001) 224106.

    Article  Google Scholar 

  21. D. Brandon, The structure of high–angle grain boundaries, Acta Metall., 14 (1966) 1479–1484.

    Article  Google Scholar 

  22. A. P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 309 (1983) 37–54.

    Article  Google Scholar 

  23. A. P. Sutton and R. W. Balluffi, Interfaces in crystalline materials, Oxford: Oxford Scientific Publications (1995).

    Google Scholar 

  24. D. Spearot, K. Jacob and D. McDowell, Molecular dynamics simulations of grain boundary decohesion in FCC copper and aluminum, 45th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. & Mater. Conf. (2004) 1–11.

    Google Scholar 

  25. T. Kitamura, K. Yashiro and R. Ohtani, Atomic simulation on deformation and fracture of nano–single crystal of nickel in tension, JSME Int. J. Ser. A, 40 (1997) 430–435.

    Article  Google Scholar 

  26. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng., 18 (2010) 15012.

    Article  Google Scholar 

  27. D. Farkas, Fracture mechanisms of symmetrical tilt grain boundaries, Philos. Mag. Lett., 80 (2000) 229–237.

    Article  Google Scholar 

  28. H. Krull and H. Yuan, Suggestions to the cohesive tractionseparation law from atomistic simulations, Eng. Fract. Mech., 78 (2011) 525–533.

    Article  Google Scholar 

  29. K. Y. Volokh, Comparison between cohesive zone models, Commun. Numer. Methods Eng., 20 (2004) 845–856.

    Article  MATH  Google Scholar 

  30. S. Plimpton, Fast parallel algorithms for short–range molecular dynamics, J. Comput. Phys., 117 (1995) 1–19.

    Article  MATH  Google Scholar 

  31. K. B. Broberg, How fast can a crack go?, Mater. Sci., 32 (1996) 80–86.

    Article  Google Scholar 

  32. F. F. Abraham, The atomic dynamics of fracture, J. Mech. Phys. Solids., 49 (2001) 2095–2111.

    Article  MATH  Google Scholar 

  33. Y. Zhou, Z. Yang and Z. Lu, Dynamic crack propagation in copper bicrystals grain boundary by atomistic simulation, Mater. Sci. Eng. A, 599 (2014) 116–124.

    Article  Google Scholar 

  34. K. Park and G. H. Paulino, Computational implementation of the PPR potential–based cohesive model in ABAQUS: Educational perspective, Eng. Fract. Mech., 93 (2012) 239–262.

    Article  Google Scholar 

  35. A. Latapie and D. Farkas, Molecular dynamics investigation of the fracture behavior of nanocrystalline α–Fe, Phys. Rev. B, 69 (2004) 134110.

    Article  Google Scholar 

  36. D. Farkas, B. Hyde, R. Nogueira and M. Ruda, Atomistic simulations of the effects of segregated elements on grainboundary fracture in body–centered–cubic Fe, Metall. Mater. Trans. A, 36 (2005) 2067–2072.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maenghyo Cho.

Additional information

Recommended by Associate Editor Seunghwa Yang

Hayoung Chung received his Ph.D. from Division of Multiscale and Mechanical Design in Mechanical and Aerospace Engineering at Seoul National University in 2017. Currently, he is a postdoctoral researcher at UC San Diego. His research interest includes multiscale mechanics and related numerical methods. Now he is pursuing multiscale topology optimization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, H., Cho, M. A molecular dynamics study on the biased propagation of intergranular fracture found in copper STGB. J Mech Sci Technol 32, 5351–5361 (2018). https://doi.org/10.1007/s12206-018-1034-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-1034-7

Keywords

Navigation