Skip to main content
Log in

Atomistic simulations of the effects of segregated elements on grain-boundary fracture in body-centered-cubic Fe

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We studied the detailed fracture behavior of a Σ=5 symmetrical-tilt grain boundary at low temperatures in Fe, using empirical interatomic potentials. For loadings just above the Griffith value, the crack propagates along the boundary for a distance of about 5 nm and then deflects toward the grains. When the boundary is loaded well above the Griffith criterion in pure bcc Fe, the crack deflects and propagates in an intragranular manner. Lattice trapping effects were observed in the initial stages, as the crack propagates along the grain boundary in a brittle manner with a periodicity given by the structural unit of the grain boundary. The effects of impurities on crack propagation along the grain boundary were simulated with various amounts of substitutional (Cr and Ni) and interstitial (H and C) impurities. The H impurities result in a strong embrittlement of the grain boundary, and no deflection of the fracture to the inside of the grains is observed. The element C has the opposite effect, inducing the deflection of the fracture to the interior of the grains from the beginning of the simulation. For the substitutional Ni and Cr impurities, the effects on grain-boundary fracture behavior are less dramatic, with Cr decreasing the resistance to grain-boundary fracture, if present in high concentrations. These effects agree with expectations based on the relative energies of segregation of the impurities to the grain boundary and free surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Sutton and R.W. Baluffi: Interfaces in Crystalline Materials, Clarendon Press, Oxford, United Kingdom, 1995, pp. 3–70.

    Google Scholar 

  2. D. Farkas: Phil. Mag. Lett., 2000, vol. 80, pp. 229–37.

    Article  CAS  Google Scholar 

  3. M. Kim, C.B. Geller, and A.J. Freeman: Scripta Mater., 2004, vol. 50, pp. 1341–43.

    Article  CAS  Google Scholar 

  4. W.T. Geng, A.J. Freeman, and G.B. Olson: Solid State Comm., 2001, vol. 119, pp. 585–90.

    Article  CAS  Google Scholar 

  5. W.T. Geng, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2001, vol. 63, p. 16.

    Google Scholar 

  6. L.P. Zhong, R.Q. Wu, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2000, vol. 62, pp. 13938–41.

    Article  CAS  Google Scholar 

  7. C.L. Briant: Mater. Sci. Technol., 2001, vol. 17, pp. 1317–23.

    CAS  Google Scholar 

  8. A.A. Griffith: Phil. Trans. R. Soc. London, Ser. A, 1920, vol. 221, pp. 163–75.

    Google Scholar 

  9. W. Curtin: J. Mater. Res., 1990, vol. 5, pp. 1549–60.

    Google Scholar 

  10. P. Gumbsch and R.M. Cannon: MRS Bull., 2000, vol. 25, pp. 15–20.

    CAS  Google Scholar 

  11. M.I. Baskes, S.M. Foiles, and M.S. Daw: J. Phys., 1988, vol. C5-49, pp. 483–95.

    Google Scholar 

  12. M. Ruda, D. Farkas, and J. Abriata: Phys. Rev. B, 1996, vol. 54, pp. 9765–74.

    Article  CAS  Google Scholar 

  13. M. Ruda, D. Farkas, and J. Abriata: Scripta Mater., 2002, vol. 46, pp. 349–55.

    Article  CAS  Google Scholar 

  14. G. Simonelli, R. Pasianot, and E. Savino: Mater. Res. Soc. Symp. Proc., 1993, vol. 291, pp. 567–76.

    CAS  Google Scholar 

  15. V. Shastry and D. Farkas: Model. Simul. Mater. Sci., 1996, vol. 4, pp. 473–92.

    Article  CAS  Google Scholar 

  16. D. Farkas, C.G. Schon, M.S.F. De Lima, and H. Goldenstein: Acta Mater., 1996, vol. 44, pp. 409–19.

    Article  CAS  Google Scholar 

  17. C. Vailhe and D. Farkas: Scripta Mater., 1998, vols. 1–2, p. 26.

    Google Scholar 

  18. S. Nedelcu and P. Kizler: Phys. Status Solidi A, 2002, vol. 1, pp. 26–34.

    Article  Google Scholar 

  19. C.J. McMahon: Interface Sci., 2004, vol. 12, pp. 141–46.

    Article  CAS  Google Scholar 

  20. C.J. McMahon: Eng. Fract. Mech., 2001, vol. 68, pp. 773–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, D., Hyde, B., Nogueira, R. et al. Atomistic simulations of the effects of segregated elements on grain-boundary fracture in body-centered-cubic Fe. Metall Mater Trans A 36, 2067–2072 (2005). https://doi.org/10.1007/s11661-005-0327-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0327-5

Keywords

Navigation