Skip to main content
Log in

Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Fully coupled thermo-mechanical model is used to obtain the true strain components. The sizes of the TMAZ and the SZ are predicted according to the different behaviors of the traced material particles. The strain rate and the temperature histories are used to calculate the Zener-Hollomon parameter and then the grain size in the SZ. Results indicate that the contribution from the temperatures is much more important than the one from the deformations. The strain rates at the advancing side are higher than the ones at the retreating side on the top surface but become symmetrical on the bottom surface. The widths of the TMAZ and the SZ become narrower in smaller shoulder diameter. Smaller shoulder can lead to smaller grain size in the SZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nandan, G. G. Roy, T. J. Lienert and T. Debroy, Threedimensional heat and material flow during friction stir welding, Acta Mater., 55 (2007) 883–895.

    Article  Google Scholar 

  2. K. Colligan and R. S. Mishra, A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Scripta Mater., 58 (2008) 327–331.

    Article  Google Scholar 

  3. G. Q. Chen, Q. Y. Shi, Y. J. Li, Y. J. Sun, Q. L. Dai, J. Y. Jia, Y. C. Zhu and J. J. Wu, Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy, Comput. Mater. Sci., 79 (2003) 540–546.

    Article  Google Scholar 

  4. S. W. Kang, B. S. Jang and J. W. Kim, A study on heat-flow analysis of friction stir welding on a rotation affected zone, J. Mech. Sci. Technol., 28 (9) (2014) 3873–3883.

    Article  Google Scholar 

  5. M. Abbasi, B. Bagheri and R. Keivani, Thermal analysis of friction stir welding process and investigation into affective parameters using simulation, J. Mech. Sci. Technol., 29 (2) (2015) 861–866.

    Article  Google Scholar 

  6. A. Arora, R. Nandan, A. P. Reynolds and T. DebRoy, Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments, Scripta Mater., 60 (2009) 13–16.

    Article  Google Scholar 

  7. Z. Zhang and H. W. Zhang, Numerical studies on controlling of process parameters in friction stir welding, J. Mater. Process. Technol., 209 (2009) 241–270.

    Article  Google Scholar 

  8. J. W. Pew, T. W. Nelson and C. D. Sorensen, Torque based weld power model for friction stir welding, Sci. Technol. Weld. Joi., 12 (2007) 341–347.

    Article  Google Scholar 

  9. Z. Zhang and H. W. Zhang, A fully coupled thermomechanical model of friction stir welding, Int. J. Adv. Manuf. Technol., 37 (2008) 279–293.

    Article  Google Scholar 

  10. H. W. Nassar and M. K. Khraisheh, Simulation of material flow and heat evolution in friction stir processing incorporating melting, J. Eng. Mater. Technol., 134 (4) (2012) 041006.

    Article  Google Scholar 

  11. S. Tutunchilar, M. Haghpanahi, M. K. B. Givi, P. Asadi and P. Bahemmat, Simulation of material flow in friction stir processing of a cast Al-Si alloy, Mater. Des., 40 (2012) 415–426.

    Article  Google Scholar 

  12. A. De and T. DebRoy, A perspective on residual stresses in welding, Sci. Technol. Weld. Joi., 16 (2011) 204–208.

    Article  Google Scholar 

  13. P. Michaleris, Modelling welding residual stress and distortion: current and future research trends, Sci. Technol. Weld. Joi., 16 (2011) 363–368.

    Article  Google Scholar 

  14. M. Riahi and H. Nazari, Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation, Int. J. Adv. Manuf. Technol., 55 (2011) 143–152.

    Article  Google Scholar 

  15. H. S. Mun and S. I. Seo, Welding strain analysis of friction stir-welded aluminum alloy structures using inherent strainbased equivalent loads, J. Mech. Sci. Technol., 27 (9) (2013) 2775–2782.

    Article  Google Scholar 

  16. Z. Zhang and Z. Y. Wan, Predictions of tool forces in friction stir welding of AZ91 magnesium alloy, Sci. Technol. Weld. Joi., 17 (6) (2012) 495–500.

    Google Scholar 

  17. A. Arora, M. Mehta, A. De and T. DebRoy, Load bearing capacity of tool pin during friction stir welding, Int. J. Adv. Manuf. Technol., 61 (2012) 911–920.

    Article  Google Scholar 

  18. L. Fratini and G. Buffa, CDRX modelling in friction stir welding of aluminium alloys, Int. J. Mach. Tool. Manuf., 45 (2005) 1188–1194.

    Article  Google Scholar 

  19. A. Gerlich, M. Yamamoto and T. H. North, Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds, Metall. Mater. Trans. A, 38 (2007) 1291–1302.

    Article  Google Scholar 

  20. G. Buffa and L. Fratini, Friction stir welding of steel: process design through continuum based FEM model, Sci. Technol. Weld. Joi., 14 (2009) 239–246.

    Article  Google Scholar 

  21. A. Bastier, M. H. Maitournam, K. D. Van, and F. Roger, Steady state thermomechanical modelling of friction stir welding, Sci. Technol. Weld. Joi., 11 (2006) 278–288.

    Article  MATH  Google Scholar 

  22. H. Schmidt and J. Hattel, A local model for the thermomechanical conditions in friction stir welding, Model. Simul. Mater. Sci. Eng., 13 (2005) 77–93.

    Article  Google Scholar 

  23. Z. Zhang and H. W. Zhang, Numerical studies of preheating time effect on temperature and material behaviors in friction stir welding process, Sci. Technol. Weld. Joi., 12 (5) (2007) 436–448.

    Article  Google Scholar 

  24. Z. Zhang and J. T. Chen, Computational investigations on reliable finite element based thermo-mechanical coupled simulations of friction stir welding, Int. J. Adv. Manuf. Technol., 60 (2012) 959–975.

    Article  Google Scholar 

  25. H. W. Zhang, Z. Zhang and J. T. Chen, The finite element simulation of the friction stir welding process, Mater. Sci. Eng. A, 403 (2005) 340–348.

    Article  Google Scholar 

  26. A. Arora, Z. Zhang, A. De and T. DebRoy, Strains and strain rates during friction stir welding, Scripta Mater., 61 (2009) 863–866.

    Article  Google Scholar 

  27. D. Kim, H. Badarinarayan, J. Kim, C. Kim, K. Okamoto, R. H. Wagoner and K. Chung, Numerical simulation of friction stir butt welding process for AA5083-H18 sheets, Euro. J. Mech. A/Solids, 29 (2010) 204–215.

    Article  Google Scholar 

  28. Z. Zhang and J. T. Chen, The simulation of material behaviors in friction stir welding process by using rate-dependent constitutive model, J. Mater. Sci., 43 (2008) 222–232.

    Article  Google Scholar 

  29. M. Grujicic, G. Arakere, B. Pandurangan, J. M. Ochterbeck, C. F. Yen, B. A. Cheeseman, A. P. Reynolds and M. A. Sutton, Computational analysis of material flow during friction stir welding of aa5059 aluminum alloys, J. Mater. Eng. Perform., 21 (9) (2012) 1824–1840.

    Article  Google Scholar 

  30. Z. Zhang, Comparison of two contact models in the simulation of friction stir welding process, J. Mater. Sci., 43 (2008) 5867–5877.

    Article  Google Scholar 

  31. Z. Zhang and H. W. Zhang, Numerical studies on the effect of transverse speed in friction stir welding, Mater. Des., 30 (2009) 900–907.

    Article  Google Scholar 

  32. Z. Zhang and H. W. Zhang, Numerical studies on the effect of axial pressure in friction stir welding, Sci. Technol. Weld. Joi., 12 (3) (2007) 226–248.

    Article  Google Scholar 

  33. H. W. Zhang, Z. Zhang and J. T. Chen, 3D modeling of material flow in friction stir welding under different process parameters, J. Mater. Process. Technol., 183 (2007) 62–70.

    Article  Google Scholar 

  34. W. H. Van Geertruyden, W. Z. Misiolek and P. T. Wang, Grain structure evolution in a 6061 aluminum alloy during hot torsion, Mater. Sci. Eng. A, 419 (2006) 105–114.

    Article  Google Scholar 

  35. Y. S. Sato, M. Urata and H. Kokawa, Parameters controlling microstructure and hardness during Friction-Stir welding of precipitation-hardenable aluminum alloy 6063, Metall. Mater. Trans. A, 33 (A) (2002) 625–635.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang.

Additional information

Recommended by Editor Chongdu Cho

Zhao Zhang, Ph.D., is a professor in Department of Engineering Mechanics at Dalian University of Technology. He received his doctoral degree from Dalian University of technology in 2007. He is a member of International Association of Computational Mechanics and serves as reviewers for about 20 international journals. His scientific research is focused on numerical simulation of friction stir welding, safety design of locomotive, and fracture mechanics. He published about 30 SCI indexed articles with about 320 citations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, Q. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding. J Mech Sci Technol 29, 4121–4128 (2015). https://doi.org/10.1007/s12206-015-0906-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0906-3

Keywords

Navigation