Skip to main content
Log in

An optimization approach for black-and-white and hinge-removal topology designs

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An optimization approach for black-and-white and hinge-removal topology designs is studied. To achieve this motive, an optimal topology allowing grey boundaries is found firstly. When a suitable design has been obtained, this solution is then used as a starting point for the follow-up optimization with the goal to free unfavorable intermediate elements. For this purpose, an updated optimality criterion in which a threshold factor is introduced to gradually suppress elements with low density is proposed. The typical optimality method and new technique proposed are applied to the design procedure sequentially. Besides, to circumvent the one-point hinge connection problem producing in the process of freeing intermediate elements, a hinge-removal strategy is also proposed. During the optimization, the binary constraints on design variables are relaxed based on the scheme of solid isotropic material with penalization. Meanwhile, the mesh-independency filter is employed to ensure the existence of a solution and remove well-known checkerboards. In this way, a solution that has few intermediate elements and is free of one-point hinge connections is obtained. Finally, different numerical examples including the compliance minimization, compliant mechanisms and vibration problems demonstrate the validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bureerat and J. Limtragool, Performance enhancement of evolutionary search for structural topology optimisation, Finite Elements in Analysis and Design, 42 (2006) 547–66.

    Article  MathSciNet  Google Scholar 

  2. B. Baumann and B Kost, Structure assembling by stochastic topology optimization, Computers & Structures, 83 (2005) 2175–84.

    Article  Google Scholar 

  3. G. Anagnostou and E. M. RHnquist and A. T. Patera, A computational procedure for part design, Computer Methods in Applied Mechanics and Engineering, 97 (1992) 33–48.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Ghaddar, Y. Maday and A. T. Patera,, Analysis of a part design procedure, Numerische Mathematik, 71 (1995) 465–510.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Werme, Using the sequential linear integer programming method as a post-processor for stress-constrained topology optimization problems, International Journal for Numerical Methods in Engineering, 76 (2008) 1544–1567.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Svanberg and M. Werme, Sequential integer programming methods for stress constrained topology optimization, Structural and Multidisciplinary Optimization, 34 (2007) 277–299.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Beckers, Topology optimization using a dual method with discrete variables, Structural Optimization, 17 (1999) 14–24.

    Article  MathSciNet  Google Scholar 

  8. C. S. Jog, A dual algorithm for the topology optimization of non-linear elastic structures, International Journal for Numerical Methods in Engineering, 77 (2009) 502–517.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Stolpe and K. Svanberg, Modelling topology optimization problems as linear mixed black-and-white programs, International Journal for Numerical Methods in Engineering, 57 (2003) 723–739.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Stolpe and T. Stidsen, A hierarchical method for discrete structural topology design problems with local stress and displacement constraints, International Journal for Numerical Methods in Engineering, 69 (2007) 1060–1084.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, 71 (1988) 197–224.

    Article  MathSciNet  Google Scholar 

  12. S. Nishiwaki, M. I. Frecker, S. Min and N. Kikuchi, Topology optimization of compliant mechanisms using the homogenization method, International Journal for Numerical Methods in Engineering, 42 (1998) 535–559.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization, Archive of Applied Mechanics, 69 (1999) 635–654.

    Article  Google Scholar 

  14. C. B. W. Petersen, T. Buhl and O. Sigmund, Topology synthesis of large-displacement compliant mechanisms, International Journal for Numerical Methods in Engineering, 50 (2001) 2683–2705.

    Article  Google Scholar 

  15. G. I. N. Rozvany, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Structural and Multidisciplinary Optimization, 21 (2001) 90–108.

    Article  Google Scholar 

  16. O. Sigmund, A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21 (2001) 120–127.

    Article  Google Scholar 

  17. M. P. Bendsøe, Optimal shape design as a material distribution problem, Structural Optimization, 1 (1989) 193–202.

    Article  Google Scholar 

  18. H. P. Mlejnik and R. Schirrmacher, An engineering approach to optimal material distribution and shape finding, Computer Methods in Applied Mechanics and Engineering, 106 (1993) 1–26.

    Article  Google Scholar 

  19. A. A. Groenwold and L. F. P. Etman, A simple heuristic for gray-scale suppression in optimality criterion-based topology optimization, Structural and Multidisciplinary Optimization (2009) DOI 10.1007/s00158-008-0337-1.

    Google Scholar 

  20. M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods, and applications, Springer-Verlag, Berlin (2003).

    Google Scholar 

  21. H. A. Eschenauer and N. Olhoff, Topology optimization of continuum structures: A review, Applied Mechanics Reviews, 54(4) (2001) 331–390.

    Article  Google Scholar 

  22. R. B. Haber, A new approach to variable-topology shape design using a constraint on perimeter, Structural Optimization, 11 (1996) 1–12.

    Article  Google Scholar 

  23. J. Petersson and O. Sigmund, Slope constrained topology optimization, International Journal for Numerical Methods in Engineering, 41 (1998) 1417–1434.

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Sigmund, Design of material structures using topology optimization, Ph.D. Thesis, Department of Solid Mechanics, Technical University of Denmark, Denmark (2006).

    Google Scholar 

  25. O. Sigmund, On the design of compliant mechanisms using topology optimization, Mechanics of Structures and Machines, 25(4) (1997) 493–524.

    Article  Google Scholar 

  26. Y. Q. Fu and X. M. Zhang, Topology extraction in the topology optimization design for structures and compliant mechanisms, Advances in Mechanics, 36(1) (2006) 75–84.

    Google Scholar 

  27. Y. K. Sui, D. Q. Yang and B. Wang, Topological optimization of continuum structure with stress and displacement constraints under multipul loading cases, Acta Mechanica Sinica, 32(2) (2000) 171–179.

    MathSciNet  Google Scholar 

  28. N. Kikuchi, S. Nishiwaki, J. S. O. Fonseca and E. C. N. Silva, Design optimization method for compliant mechanisms and material microstructure, Computer Methods in Applied Mechanics and Engineering, 151 (1998) 401–417.

    Article  MATH  MathSciNet  Google Scholar 

  29. C.-Y. Lin and F.-M. Sheu, Adaptive volume constraint algorithm for stress limit-based topology optimization, Computer-Aided Design, 41 (2009) 685–694.

    Article  Google Scholar 

  30. T. Borrvall and J. Pertersson, Topology optimization using regularized intermediate density control, Computer Methods in Applied Mechanics and Engineering, 190 (2001) 4911–4928.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Werme, Using the sequential linear integer programming method as a post-processor for stress-constrained topology optimization problems, International Journal for Numerical Methods in Engineering, 76 (2008) 1544–1567.

    Article  MATH  MathSciNet  Google Scholar 

  32. O. Sigmund, Morphology-based black and white filters for topology optimization, Structural and Multidisciplinary Optimization, 33 (2007) 401–424.

    Article  Google Scholar 

  33. M. Y. Wang and S. Wang, Bilateral filtering for structural topology optimization, International Journal for Numerical Methods in Engineering, 63 (2005) 1911–1938.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. E. Bruns, A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization, Structural and Multidisciplinary Optimization, 30 (2005) 428–436.

    Article  MathSciNet  Google Scholar 

  35. D. N. Chu, Y. M. Xie, A. Hira and G. P. Steven, Evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design, 21 (1996) 239–251.

    Article  MATH  Google Scholar 

  36. M. Sauter, G. Kress, M. Giger and P. Ermanni, Complexshaped beam element and graph-based optimization of compliant mechanisms, Structural and Multidisciplinary Optimization, 36 (2008) 429–442.

    Article  MATH  MathSciNet  Google Scholar 

  37. N. P. Garcia-Lopez, M. Sanchez-Silva, A. L. Medaglia and A. Chateauneuf, A hybrid topology optimization methodology combining simulated annealing and SIMP, Computers & Structures, 89 (2011) 1512–1522.

    Article  Google Scholar 

  38. G.-W. Jang, M.-J. Kim and Y. Y. Kim, Design optimization of compliant mechanisms consisting of standardized elements, ASME Journal of Mechanical Design, 131 (2009) 121006-1–121006-8.

    Google Scholar 

  39. Z. Luo, L. Y. Tong, M. Y. Wang and S. Y. Wang, Shape and topology optimization of compliant mechanisms using a parameterization level set method, Journal of Computational Physics, 227 (2007) 680–705.

    Article  MATH  MathSciNet  Google Scholar 

  40. K. A. James and J. R. R. A. Martins. An isoparametric approach to level set topology optimization using a bodyfitted finite-element mesh, Computers & Structures, 90–91 (2012) 97–106.

    Article  Google Scholar 

  41. N. F. Wang and K. Tai, Design of grip-and-move manipulators using symmetric path generating compliant mechanisms, ASME Journal of Mechanical Design, 130 (2008) 112305-1–112305-9.

    Google Scholar 

  42. H. Zhou and K.-L. Ting, Geometric optimization of spatial compliant mechanisms using three-dimensional wide curves, ASME Journal of Mechanical Design, 131 (2009) 051002-1–051002-7.

    Google Scholar 

  43. J. Du and N. Olhoff, Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps, Structural and Multidisciplinary Optimization, 34 (2007) 91–110.

    Article  MATH  MathSciNet  Google Scholar 

  44. N. L. Pedersen, Maximization of eigenvalues using topology optimization, Structural and Multidisciplinary Optimization, 20 (2000) 2–11.

    Article  Google Scholar 

  45. X. M. Zhang, Topology optimization of compliant mechanisms, Chinese Journal of Mechanical Engineering, 39(1) (2003) 47–51.

    Article  Google Scholar 

  46. M. I. Frecker, S. Kota and N. Kikuchi, Use of penalty function in topological synthesis and optimization of strain energy density of compliant mechanisms, Proceedings of the 1997 ASME Design Engineering Technical Conferences, DETC97/DAC-3760 (1997).

    Google Scholar 

  47. M. I. Frecker, N. Kikuchi and S. Kotqa, Topology optimization of compliant mechanisms with multiple outputs, Structural Optimization, 17 (1999) 269–278.

    Article  Google Scholar 

  48. M. I. Frecker, G. K. Ananthasuresh, S. Nishiwaki and S. Kota, Topological synthesis of compliant mechanisms using multi-criteria optimization, ASME Journal of Mechanical Design, 119(2) (1997) 238–245.

    Article  Google Scholar 

  49. M. I. Frecker and S. Canfield, Design of efficient compliant mechanisms from ground structure based optimal topologies, Proceedings of the 2000 ASME Design Engineering Technical Conferences DETC200/MECH-14142 (2000).

    Google Scholar 

  50. G. K. Ananthasuresh, S. Kota and N. Kikuchi, Stratrgies for systematic synthesis of compliant MEMS, Proceedings of the 1994 ASME Winter Annual Meeting on Dynamic Systems and Control, IL, Chicago, DSC 55(2) (1994) 677–686.

    Google Scholar 

  51. J. A. Hetrick and S. Kota, Topological and geometric synthesis of compliant mechanisms, Proceedings of the 2000 ASME Design Engineering Technical Conferences DETC200/MECH-14140 (2000).

    Google Scholar 

  52. M. Bendsøe, Optimization of structural topology, shape and material, Springer-Verlag, Berlin (1995).

    Book  Google Scholar 

  53. X. M. Zhang, Optimal design of flexible mechanisms with frequency constraints, Mechanism and Machine Theory, 30(1) (1995) 131–139.

    Article  Google Scholar 

  54. X. M. Zhang, Integrated optimal design of flexible mechanism and vibration control. International Journal of Mechanical Sciences, 46 (2004) 1607–1620.

    Article  MATH  Google Scholar 

  55. K. T. Zuo, Research of theory and application about topology optimization of continuum structure, Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zhang.

Additional information

Recommended by Associate Editor Jeonghoon Yoo

Yongqing Fu received her Ph.D. in Mechanical Engineering from South China University of Technology, China, in 2009. She is an associate professor in the School of Design of South China University of Technology, China. Her research interests include topology optimization and topology extraction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Zhang, X. An optimization approach for black-and-white and hinge-removal topology designs. J Mech Sci Technol 28, 581–593 (2014). https://doi.org/10.1007/s12206-013-1191-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-013-1191-7

Keywords

Navigation