Skip to main content
Log in

Simple Model on Water Retention and Permeability in Soil Mixed with Lignocellulose Fibres

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Natural or lignocellulose fibres have been widely used for reinforcing soils in geotechnical infrastructures by using their mechanical reinforcement. However, less attention has been taken to the hydraulic properties of soil-lignocellulose fibre composites, namely Soil Water Retention Curve (SWRC) and soil water permeability. These hydraulic properties are the key parameters when conducting transient seepage analysis in reinforced slope stability calculation. Till now, there is no model yet that can capture SWRC and water permeability of soil-lignocellulose fibre composite. This technical note aims to develop a new and simple model for predicting the SWRC and water permeability of soils mixed with lignocellulose fibres. The model considers the void ratio change by incorporating the air void from fibres. The void ratio function is then fed into a void-ratio-dependent SWRC model. SWRCs and water permeability of soils mixed with two lignocellulose fibres (jute and coir) were measured systematically to provide high quality data to validate the proposed model. There were three replicates for each case. It shows that the presence of pore structures in natural fibres reduced air entry value of soils from 8 kPa to 2–3 kPa, while it had no effects on desorption rates. Moreover, those pores in lignocellulose fibres increased the water flow path, resulting in increased water permeability. As demonstrated by dye tracer experiments, the increased water flow was along the cellulose, hemicellulose fibrils inside the fibre and soil-fibre interface. The comparisons between experimental measurements and model predictions indicate that the proposed simple model can capture the effects of natural fibres on soil hydraulic properties quite well, with the maximum discrepancy less than 15% and 28% for SWRC and water permeability, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bared, M. A. M., Marto, A., and Latifi, N. (2018). “Utilization of recycled tiles and tyres in stabilization of soils and production of construction materials-a state-of-the-art review.” KSCE Journal of Civil Engineering, pp. 1–15, DOI: 10.1007/s12205-018-1532-2.

    Google Scholar 

  • Anggraini, V., Huat, B. B., Asadi, A., and Nahazanan, H. (2015). “Effect of coir fibres on the tensile and flexural strength of soft marine clay.” Journal of Natural Fibres, Vol. 12, No. 2, pp. 185–200, DOI: 10.1080/15440478.2014.912973.

    Article  Google Scholar 

  • ASTM (2015). Standard test method for ash in biomass, Annual Book of ASTM Standards 11(5), ASTM International, West Conshohocken, PA, United Stutes, DOI: 10.1520/E1755-01R15.

  • ASTM (2010). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, United Stutes, DOI: 10.1520/D4318-10.

  • ASTM (2017). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, ASTM International, West Conshohocken, PA, United States, DOI: 10.1520/D7928-17.

  • Bordoloi, S., Gadi, V. K., Hussain, R., Garg, A., Sreedeep, S., and Poulsen, T. (2018a). “Influence of fibre from waste weed Eichhornia Crassipes on water retention and cracking characteristics of vegetated soils.” Geotechnique Letters, DOI: 10.1680/jgele.17.00181 2018.

    Google Scholar 

  • Bordoloi, S., Kashyap, V., Garg, A., Sreedeep, S., Wei, L., and Andriyas, S. (2018b). “Measurement of mechanical characteristics of fibre from a novel invasive weed: A comprehensive comparison with fibres from agricultural crops.” Measurement, Vol. 113, pp. 62–70, DOI: 10.1016/j.measurement.2017.08.044.

    Article  Google Scholar 

  • Bordoloi, S., Hussain, R., Garg, A., Sreedeep, S., and Zhou, W. H. (2017). “Infiltration characteristics of natural fibre reinforced soil.” Transportation Geotechnics, Vol. 12, pp. 37–44, DOI: 10.1016/j.trgeo.2017.08.007.

    Article  Google Scholar 

  • Carman, P. S. (1956). Flow of gases through porous media, Academic Press, New York, United Stutes.

    MATH  Google Scholar 

  • Chapuis, R. P. (2012). “Predicting the saturated hydraulic conductivity of soils: A review.” Bulletin of Engineering Geology and the Environment, Vol. 71, No. 3, pp. 401–434, DOI: 10.1007/s10064-012-0418-7.

    Article  Google Scholar 

  • Chauhan, M. S., Mittal, S., and Mohanty, B. (2008). “Performance evaluation of silty sand subgrade reinforced with fly ash and fibre.” Geotextiles and Geomembranes, Vol. 26, No. 5, pp. 429–435, DOI: 10.1016/j.geotexmem.2008.02.001.

    Article  Google Scholar 

  • Cui, Y. J., Tang, C. S., Tang, A. M., and Ta, A. N. (2015). “Investigation of soil desiccation cracking using an environmental chamber.” Rivista Italiana Di Geotecnica1, Vol. 48, No. 1, pp. 9–20, https://halenpc. archives-ouvertes.fr/hal-01157495.

    Google Scholar 

  • Divya, P. V., Viswanadham, B. V. S., and Gourc, J. P. (2014). “Evaluation of tensile strength-strain characteristics of fibre-reinforced soil through laboratory tests.” Journal of Materials in Civil Engineering, Vol. 26, No. 1, pp. 14–23, DOI:10.1061/(ASCE)MT.1943-5533.0000772.

    Article  Google Scholar 

  • Garg, A., Li, J., Berretta, C., and Garg, A. (2017). “A new computational approach for estimation of wilting point for green infrastructure.” Measurement, DOI: 10.1016/j.measurement.2017.07.026.

    Google Scholar 

  • Gallipoli, D., Wheeler, S. J., and Karstunen, M. (2003). “Modelling the variation of degree of saturation in a deformable unsaturated soil”. Géotechnique, Vol. 53, No. 1, pp. 105–112, DOI: 10.1680/geot.2003.53.1.105.

  • GCO (Geotechnical Control Office) (2000). Geotechnical manual for slopes, Geotechnical Control Office, Hong Kong, China.

  • Goering, H. K. and Van Soest, P. J. (1970). Forage fibre analyses (apparatus, reagents, procedures, and some applications), U.S. Agriculture.

    Google Scholar 

  • Hassan, W. H. W., Rashid, A. S. A., Latifi, N., Horpibulsuk, S., and Borhamdin, S. (2017). “Strength and morphological characteristics of organic soil stabilized with magnesium chloride.” Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 50, No. 4, pp. 454–459, DOI: 10.1144/qjegh2016-124.

    Article  Google Scholar 

  • Hazen, A. (1930). “Water Supply.” American Civil Engineers Handbook, John Wiley & Sons, New York.

    Google Scholar 

  • Hearle, J. W. and Morton, W. E. (2008). Physical properties of textile fibres, Elsevier.

    Google Scholar 

  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., and Zadhoush, A. (2012). “A simple review of soil reinforcement by using natural and synthetic fibres.” Construction and Building Materials, Vol. 30, pp. 100–116, DOI: 10.1016/j.conbuildmat.2011.11.045.

    Article  Google Scholar 

  • IS (1991). Determination of Breaking Load and Elongation at Break of Single Strand Textiles and Yarns, Bureau of Indian Standards Publications, New Delhi.

  • Jenkins, S. H. (1930). “The determination of cellulose in straws.” Biochemical Journal, Vol. 24, No. 5, pp. 1428.

    Article  Google Scholar 

  • Kar, R. K., Pradhan, P. K., and Naik, A. (2012). “Plate load test on fibrereinforced cohesive soil.” Electronic Journal of Geotechnical Engineering, Vol. 17, pp. 633–649.

    Google Scholar 

  • Kenny, T. C., Lau, D., and Ofoegbu, G. I. (1984). “Permeability of compacted granular materials.” Canadian Geotechnical Journal, Vol. 21, No. 4, pp. 726–729, DOI: 10.1139/t84-080.

    Article  Google Scholar 

  • Khalil, H. A., Hossain, M. S., Rosamah, E., Azli, N. A., Saddon, N., Davoudpoura, Y., Islam, M. N., and Dungani, R. (2015). “The role of soil properties and it’s interaction towards quality plant fibre: A review.” Renewable & Sustainable Energy Reviews, Vol. 43, pp. 1006–1015, DOI: 10.1016/j.rser.2014.11.099.

    Article  Google Scholar 

  • Kozeny, J. (1927). “Ueber kapillare Leitung desWassers im Boden.” Sitzungsberichte, Wiener Akademie, SCIRP, Vol. 136, No. 2a, pp. 271–306.

    Google Scholar 

  • Kua, T. A., Arulrajah, A., Horpibulsuk, S., Du, Y. J., and Suksiripattanapong, C. (2016). “Engineering and environmental evaluation of spent coffee ground stabilised with industrial by-products as a road subgrade material.” Clean Technologies and Environmental Policy, Vol. 19, No. 1, pp. 63–75, DOI: 10.1007/s10098-016-1188-x.

    Article  Google Scholar 

  • Laibi, A. B., Poullain, P., Leklou, N., Gomina, M., and Sohounhloue, D. K. C. (2018). Influence of the length of kenaf fibres on the mechanical and thermal properties of Compressed Earth Blocks (CEB). KSCE Journal of Civil Engineering, Vol. 22, No. 2, pp. 785–793, DOI: 10.1007/s12205-017-1968-9.

    Article  Google Scholar 

  • Latifi, N., Eisazadeh, A., and Marto, A. (2014). “Strength behavior and microstructural characteristic of tropical laterite soil treated with the sodium silicate-based liquid stabilizer.” Environmental Earth Science, Vol. 72, No. 1, pp. 91–98, DOI: 10.1007/s12665-013-2939-1.

    Article  Google Scholar 

  • Latifi, N., Eisazadeh, A., Marto, A., and Meehan, C. L. (2017b). “Tropical residual soil stabilization: A powder form material for increasing soil strength.” Construction and Building Materials, Vol. 147, pp. 827–836, DOI: 10.1016/j.conbuildmat.2017.04.115.

    Article  Google Scholar 

  • Latifi, N., Vahedifard, F., Ghazanfari, E., Horpibulsuk, S., Marto, A., and Williams, J. (2017a). “Sustainable improvement of clays using Low-Carbon nontraditional additive.” International Journal of Geomechanics, Vol. 18, No. 3, 04017162, DOI: 10.1061/(ASCE) GM.1943-5622.0001086.

    Article  Google Scholar 

  • Latifi, N., Vahedifard, F., Ghazanfari, E. A., and Rashid, A. S. (2018). “Sustainable usage of calcium carbide residue for stabilization of clays.” Journal of Materials in Civil Engineering, Vol. 30, No. 6, 04018099, DOI: 10.1061/(ASCE)MT.1943-5533.0002313.

    Article  Google Scholar 

  • Lee, K. Y., Shamsuddin, S. R., Fortea-Verdejo, M., and Bismarck, A. (2014). “Manufacturing of robust natural fibre preforms utilizing bacterial cellulose as binder.” Journal of Visualized Experiments, Vol. 87, 10.3791/51432, DOI: 10.3791/51432.

  • Leung, A. K., Garg, A., and Ng, C. W. W. (2015). “Effects of plant roots on soil–water retention and induced suction in vegetated soil.” Engineering Geology, Vol, 193, pp. 183–197, DOI: 10.1016/j.enggeo.2015.04.017.

    Article  Google Scholar 

  • Mbonimpa, M., Aubertin, M., Chapuis, R. P., and Bussiere, B. (2002). “Practical pedotransfer functions for estimating the saturated hydraulic conductivity.” Geotechnical and Geological Engineering, Vol. 20, No. 3, pp. 235–259, DOI: 10.1023/A:1016046214724.

    Article  Google Scholar 

  • Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., and Bergado, D. T. (2010). “Properties and potential application of the selected natural fibres as limited life geotextiles.” Carbohydrate Polymers, Vol. 82, No. 4, pp. 1090–1096, DOI: 10.1016/j.carbpol.2010.06.036.

    Article  Google Scholar 

  • Ng, C. W. W., Leung, A. K., and Woon, K. X. (2014). “Effects of soil density on grass-induced suction distributions in compacted soil subjected rainfall.” Canadian Geotechnical Journal, Vol. 51, No. 3, pp. 311–321, DOI: 10.1139/cgj-2013-0221.

    Article  Google Scholar 

  • Ng, C. W. W., Ni, J. J., Leung, A. K., and Wang, Z. J. (2016a). “A new and simple water retention model for root-permeated soils.” Géotechnique Letters, Vol. 6, No. 1, pp. 106–111, DOI: 10.1680/jgele.15.00187.

    Article  Google Scholar 

  • Ng, C. W. W., Ni, J. J., Leung, A. K., Zhou, C., and Wang, Z. J. (2016b). “Effects of planting density on tree growth and induced soil suction.” Géotechnique, Vol. 66, No. 9, pp. 711–724, DOI: 10.1680/jgeot.15.P.196.

    Article  Google Scholar 

  • Ng, C. W. W. and Pang, Y. W. (2000). “Experimental investigations of the soil–water characteristics of a volcanic soil.” Canadian Geotechnical Journal, Vol. 37, No. 6, pp. 1252–1264, DOI: 10.1139/t00-056.

    Article  Google Scholar 

  • Ni, J. J., Leung, A. K., and Ng, C. W. W. (2017). “Investigation of plant growth and transpiration-induced suction under mixed grass-tree conditions.” Canadian Geotechncial Journal, Vol. 54, No. 4, pp. 561–573, DOI: 10.1139/cgj-2016-0226.

    Article  Google Scholar 

  • Ni, J. J., Leung, A. K., Ng, C. W. W., and Shao, W. (2018). “Modelling hydro-mechanical reinforcements of plants to slope stability.” Computers and Geotechnics, Vol. 95, pp. 99–109, DOI: 10.1016/j.compgeo.2017.09.001.

    Article  Google Scholar 

  • Orakoglu, M. E., and Liu, J. K. (2017). “Effect of free-thaw cycles on triaxial strength properties of fibre-reinforced clayed soil.” KSCE Journal of Civil Engineering, Vol. 21, No. 6, pp. 2128–2140, DOI: 10.1007/s12205-017-0960-8.

    Article  Google Scholar 

  • Pickering, K. L., Effendy, M. G. A., and Le, T. M. (2016). “A review of recent developments in natural fibre composites and their mechanical performance.” Composites Part A: Applied Science and Manufacturing, Vol. 83, pp. 98–112, DOI: 10.1016/j.compositesa.2015.08.038.

    Article  Google Scholar 

  • Prabakar, J., and Sridhar, R. S. (2002). “Effect of random inclusion of sisal fibre on strength behaviour of soil.” Construction and Building Materials, Vol. 16, No. 2, pp. 123–131, DOI: 10.1016/S0950-0618 (02)00008-9.

    Article  Google Scholar 

  • Romero, E., Gens, A., and Lloret, A. (1999). “Water permeability, water retention and microstructure of unsaturated compacted boom clay.” Engineering Geology, Vol. 54, Nos. 1–2, pp. 117–127, DOI: 10.1016/S0013-7952(99)00067-8.

    Article  Google Scholar 

  • Scholl, P., Leitner, D., Kammerer, G., Lioskandl, W., Kaul, H. P., and Bodner, G. (2014). “Root induced changes of effective 1D hydraulic properties in a soil column.” Plant and Soil, Vol. 381, Nos. 1–2, pp. 193–213, DOI: 10.1007/s11104-014-2121-x.

    Article  Google Scholar 

  • Shukla, S. K., Shahin, M. A., and Abu-Taleb, H. (2015). “A note on void ratio of fibre-reinforced soils.” International Journal of Geosynthetics and Ground Engineering, pp. 1–29, DOI: 10.1007/s40891-015-0030-6.

    Google Scholar 

  • Sivakumar Babu, G. L. and Vasudevan, A. K. (2008). “Strength and stiffness response of coir fibre-reinforced tropical soil.” Journal of Materials in Civil Engineering, Vol. 20, No. 9, pp. 571–577, DOI: 10.1061/(ASCE)0899-1561(2008)20:9(571).

    Article  Google Scholar 

  • Smekal, A. (2008). “Strengthening methods for subsoil under existing railway lines.” Proc. 8th World Congr Railw Res (WCRR), Seoul, Korea, pp. 1–11.

    Google Scholar 

  • Smets, T., Poesen, J., Langhans, C., Knapen, A., and Fullen, M. A. (2009). “Concentrated flow erosion rates reduced through biological geotextiles.” Earth Surface Processes and Landforms, Vol. 34, No. 4, pp. 493–502, DOI: 10.1002/esp.1729.

    Article  Google Scholar 

  • Song, L., Li, J.H., Zhou, T., and Fredlund, D. G. (2017). “Experimental study on unsaturated hydraulic properties of vegetated soil.” Ecological Engineering, Vol. 103, pp. 207–216, DOI: 10.1016/j.ecoleng.2017.04.013.

    Article  Google Scholar 

  • Spiegelberg, H. L. (1966). The effect of hemicelluloses on the mechanical properties of individual pulp fibres, PhD Thesis, Lawrence University, Appleton, Wisconsin, USA.

    Google Scholar 

  • Tabarsa, A., Latifi, N., Meehan, C. L., and Manahiloh, K. N. (2018). “Laboratory investigation and field evaluation of loess improvement using nanoclay-A sustainable material for construction.” Construction and Building Materials, Vol. 158, pp. 454–463, DOI: 10.1016/j.conbuildmat.2017.09.096.

    Article  Google Scholar 

  • Tang, C., Shi, B., Gao, W., Chen, F., and Cai, Y. (2007). “Strength and mechanical behavior of short polypropylene fibre reinforced and cement stabilized clayey soil.” Geotextiles Geomembranes, Vol. 25, No. 3, pp. 194–202, DOI: 10.1016/j.geotexmem.2006.11.002.

    Article  Google Scholar 

  • Tastan, E. O., Edil, T. B., Bensen, C. H., and Aydilek, A. H. (2011). “Stabilization of organic soil with fly ash.” Journal of Geotechnical & Environmental Engineering, Vol. 137, pp. 819–833, DOI: 10.1061/(ASCE)GT.1943-5606.0000502.

    Article  Google Scholar 

  • TDOT (Tennessee Department of Transportation) (1981). “Subgrade construction and preparation.” Specifications for road and bridge construction, Part2, Section 207, TDOT, USA, pp. 182–186.

  • van Genuchten, M. T. (1980). “A closed-formequation for predicting the hydraulic conductivity of unsaturated soils.” Soil Science Society of America Journal, Vol. 44, No. 5, pp. 892–898, DOI: 10.2136/sssaj1980.03615995004400050002x.

    Article  Google Scholar 

  • Vardhan, H., Bordoloi, S., Garg, A., Garg, A., and Sreedeep, S. (2017). “Compressive strength analysis of soil reinforced with fibre extracted from water hyacinth.” Engineering Computations, Vol. 34, No. 2, pp. 330–342, DOI: 10.1108/EC-09-2015-0267.

    Article  Google Scholar 

  • Vergani, C. and Graf, F. (2015). “Soil permeability, aggregate stability and root growth: A pot experiment from a soil bioengineering perspective.” Ecohydrology, Vol. 9, pp. 830–842, DOI: 10.1002/eco.1686.

    Article  Google Scholar 

  • Yin, J. H. (2009). “Influence of relative compaction on the hydraulic conductivity of completely decomposed granite in Hong Kong.” Canadian Geotechnical Journal, Vol. 46, No. 10, pp. 1229–1235, DOI: 10.1139/T09-053.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Sanandam, B., Garg, A. et al. Simple Model on Water Retention and Permeability in Soil Mixed with Lignocellulose Fibres. KSCE J Civ Eng 23, 138–146 (2019). https://doi.org/10.1007/s12205-017-0657-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0657-z

Keywords

Navigation