Skip to main content
Log in

Influence of the kenaf fiber length on the mechanical and thermal properties of Compressed Earth Blocks (CEB)

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The association of natural fibers and raw land soil has many advantages (thermal control, sound insulation, mechanical behavior, etc.). However, the major issue with the use of these materials is the lack of knowledge regarding their reliability and durability. In this work, we have evaluated the influence of kenaf fiber length on the mechanical and thermal properties of Compressed Earth Blocks (CEB). Fibers with length 10, 20 or 30 mm were used at mixing rate of 1.2% dry weight of soil; with the aim to enhance the mechanical and thermal properties of CEB fabricated starting from a plastic clayey soil mined in Benin. Analysis of the mechanical behavior of different Soil/Fiber formulations in terms of flexural strength demonstrated the beneficial effect of the fibers. However, the mechanical strength of CEB obtained by immersing fibers till saturation prior to incorporation into the soil greatly diminished. The higher flexural strength was obtained with fibers 30 mm long. The thermal conductivity of CEB decreased when the fiber length was raised. The results showed the real possibility to improve CEB mechanical and thermal properties by using fibers for reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACI 544 (1996). “State-of-the-art report on fibre reinforced concrete.” Reported by ACI Committee 544, pp. 1–96.

    Google Scholar 

  • Achenza, M. and Fenu, L. (2006). “On earth stabilization with natural polymers for soil masonry construction.” Mater. Struct., Vol. 39, No. 1, pp. 21–27, DOI: 10.1617/s11527-005-9000-0.

    Article  Google Scholar 

  • Avrami, E., Guillaud, H., and Hardy, M. (2008). Terra Literature Review, An Overview of Research in Earthen Architecture Conservation, the Getty Conservation Institute, Los Angeles.

    Google Scholar 

  • Bendahou, A., Habibi, Y., Kaddafi, H., and Duferesne, A. (2009). “Composite Material based on lingo cellulosic fiber and thermoplastic matrices (IPP and LDPE).” Revue Roumaine de Chimie, Vol. 54, No. 7, pp. 557–563.

    Google Scholar 

  • Ben Mansour, M., Jelidi, A., Soukaina Cherif, A., and Ben Jabrallah, S. (2016). “Optimizing thermal and mechanical performance of Compressed Earth Blocks (CEB).” Construction and Building Materials, Vol. 104, No. 1, pp. 44–41, DOI: 10.1016/j.conbuildmat.2015.12.024.

    Article  Google Scholar 

  • Binici, H., Aksogan, O., and Shah, T. (2005). “Investigation of fibre reinforced mud bricks as a building material.” Constr Build Mater, Vol. 19, No. 4, pp. 313–318, DOI: 10.1016/j.conbuildmat.2004. 07.013.

    Article  Google Scholar 

  • Bouhicha, M., Aouissi, F., and Kenai, S. (2005). “Performance of composite soil reinforced with barley straw.” Cem and Concr Compos, Vol. 27, No. 5, pp. 617–621, DOI: 10.1016/j.cemconcomp.2004.09.013.

    Article  Google Scholar 

  • Calvo, M. (1989). “Application of the Weibull statistics to the characterization of metallic glass ribbons.” Journal of Materials Science, Vol. 24, No. 5, pp. 1801–1808, DOI: 10.1007/BF01105708.

    Article  Google Scholar 

  • Charlet, K., Jernot, J. P., Gomina, M., Breard, J., Morvan, C., and Bailey, C. (2009). “Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties.” Composites Science and Technology, Vol. 69, pp. 1399–1403.

    Article  Google Scholar 

  • Charlet, K., Baley, C., Morvan, C., Jernot, J.-P., Gomina, M., and Breard, J. (2007). “Characteristics of Hermes flax fibres as a function of their location in the stem and properties of the derived unidirectional composites.” Composites Part, Vol. 10, No. 38, pp. 1912–1921.

    Article  Google Scholar 

  • Ghavami, K, Toledo Filho, R. D., and Barbosa, N. P. (1999). “Behaviour of composite soil reinforced with natural fibres.” Cem. Concr. Compos., Vol. 21, No. 1, pp. 39–48, DOI: 10.1016/S0958-9465(98)00033-X.

    Article  Google Scholar 

  • Hall, M. R. and Casey, S. (2012). “Hygrothermal behaviour and occupant comfort in modern earth buildings.” Modern Earth Buildings. Materials, Engineering, Construction and Applications, Woodhead, Oxford, pp. 17–40.

    Chapter  Google Scholar 

  • Ismail, S. and Yaacob, Z. (2011). “Properties of laterite bricks reinforced with oil palm empty fruit bunch fibres.” Pertanika J. Sci. Technol., Vol. 19, No. 1, pp. 33–43.

    Google Scholar 

  • Jeong, J., Ramézani, H., and Leklou, N. (2016). “Why does the modified Arrhenius’ law fail to describe the hydration modeling of recycled aggregate?.” Thermochimica Acta, Vol. 626, pp. 13–30, DOI: 10.1016/j.tca.2016.01.001.

    Article  Google Scholar 

  • Juárez, C., Guevara, B., and Durán-Herrera, A. (2010). “Mechanical properties of natural fibers reinforced sustainable masonry.” Construc Build Mater, Vol. 24, No. 8, pp. 1536–1541, DOI: 10.1016/j.conbuildmat.2010.02.007.

    Article  Google Scholar 

  • Kouakou, H. and Morel, J. C. (2009). “Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder.” Appl. Clay Sci., Vol. 44, Nos. 1–2, pp. 27–34, DOI: 10.1016/j.clay.2008.12.019.

    Article  Google Scholar 

  • Kriker, A., Debicki, G., Bali, A., Khenfer, M. M., and Chabannet, M. (2005). “Mechanical properties of date palm fibres and reinforced date palm fibre concrete in hot-dry climate.” Cem. Concr. Compos., Vol. 27, No. 5, pp. 554–564, DOI: 10.1016/j.cemconcomp.2004.09.015.

    Article  Google Scholar 

  • Laibi, B. A., Gomina, M., Sagbo, E., Agbahoungbata M., Poullain, P., Leklou, N., and Sohounhloue, K. C. D. (2017). “Physicochemical and mechanical characterization of Benin’s Kenaf fibers and its effect on the building Compressed Earth Blocks (CEB) mechanical properties.” Research Journal of Chemical, Vol. 7, No. 2, pp. 6–15.

    Google Scholar 

  • Lamia, Y. (2011). Caractérisation d’un composite à la rupture à base des fibres végétales (Diss), thèse Magister, Université Ferhat Abbassetifufas, Algérie, mécanique appliqué.

    Google Scholar 

  • Marrot, L., Lefeuvre, A., Pontoire, B., Bourmaudm A., and Baley, C. (2013). “Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17).” Industrial Crops and Products, Vol. 51, pp. 317–327.

    Article  Google Scholar 

  • Mesbah, A., Morel, J. C., Walker, P., and Ghavami, K. (2004). “Development of a direct tensile test for compacted soil blocks reinforced with natural fibers.” J. Mater Civil Eng., Vol. 16, No. 1, pp. 95–98, DOI: 10.1061/(ASCE)0899-1561(2004)16:1(95).

    Article  Google Scholar 

  • Mileto, C., Vegas, F., and Cristini, V. (2012). Rammed Earth Conservation, CRC Press, Boca Raton.

    Google Scholar 

  • Millogo, Y., Jean-Emmanuel, A., Jean-Claude, M., and Erwan, H. (2015). “How properties of kenaf fibers from burkina faso contribute to the reinforcement of earth blocks.” Materials, Vol.8, No, pp. 2332–2345, DOI: 10.3390/ma8052332.

    Article  Google Scholar 

  • Millogo, Y., Jean-Claude, M., Jean-Emmanuel, A., and Khosrow, G. (2014). “Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers.” Construction and Building Materials, Vol. 52, pp. 71–78, DOI: 10.1016/j.conbuildmat.2013.10.094.

    Article  Google Scholar 

  • Minke, G. (2006). Building with Earth. Design and Technology of a Sustainable Architecture, Birkhäuser, Basel.

    Google Scholar 

  • Mouhoubie, S. (2008). Caractérisation de l’interface d’un composite fibre végétale/polypropylène, thése Magister, Unviersité Farhat Abbas, Algérie, mécanique appliqué.

    Google Scholar 

  • Parisi, F. D., Asprone, L., and Fenu, A. Prota. (2015). “Experimental characterization of Italian composite adobe bricks reinforced with straw fibers.” Compos. Struct., Vol. 122, pp. 300–307, DOI: 10.1016/j.compstruct.2014.11.060.

    Article  Google Scholar 

  • Placet, V., Trivaudey, F., Cisse, O., Guicheret-Retel, V., and Boubakar M. L. (2012), “Diameter dependence of the apparent tensile modulus of hemp fibres: A morphological, structural or ultrastructural effect?.” Compos: Part A, Vol. 43, pp. 275–287.

    Article  Google Scholar 

  • Poullain, P., Mounanga, P., Bastian, G., and Coué, R. (2006). “Determination of the thermophysical properties of evolutive porous materials.” Eur. Phys. J. Appl. Phyq., Vol. 33, No 1., pp. 35–49, DOI: DOI: 10.1051/epjap:2005095.

    Article  Google Scholar 

  • Quagliarini, E. and Lenci, S. (2010). “The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks.” J. Cult. Heritage, Vol. 11, pp. 309–314, DOI: 10.1016/j.culher.2009.11.012.

    Article  Google Scholar 

  • Thuault, A. (2011). Approche multi-échelle de la structure et du comportement mécanique de la fibre de lin, Thèse de doctorat, Université de Caen Basse-Normandie, France, Chimie des Matériaux.

    Google Scholar 

  • Weibull, W. A. A. (1951). “Statistical distribution function of wide acceptability.” Appl. Mech., Vol. 18, pp. 293–297.

    MATH  Google Scholar 

  • Yetgin, S., Cavdar, O., and Cavdar, A. (2008). “The effects of the fiber contents on the mechanic properties of the adobes.” Construc Build Mater, Vol. 22, No. 3, pp. 222–227, DOI: 10.1016/j.conbuildmat.2006.08.022.

    Article  Google Scholar 

  • Zafeiropoulos, N. E., Dijon, G. G., and Baillie, C. A. (2007). “A study of the effect of surface treatments on the tensile strength of flax fibres: Part I. Application of Gaussian statistics.” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 2, pp. 621–628.

    Article  Google Scholar 

  • Zami, M. S. and Lee, A. (2010). “Economic benefits of contemporary earth construction in low-cost urban housing–state-of-the-art review.” Journal of Building Appraisal, Vol. 5, No. 3, pp. 259–271, DOI: 10.1057/jba.2009.32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nordine Leklou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laibi, A.B., Poullain, P., Leklou, N. et al. Influence of the kenaf fiber length on the mechanical and thermal properties of Compressed Earth Blocks (CEB). KSCE J Civ Eng 22, 785–793 (2018). https://doi.org/10.1007/s12205-017-1968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1968-9

Keywords

Navigation