Skip to main content
Log in

Modeling fracture of concrete with a simplified meshless discrete crack method

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Fracture in quasi-brittle materials such as concrete is accompanied by excessive cracking. Numerical analysis of concrete fracture is either based on smeared crack method or discrete crack method. Smeared crack methods are computationally less challenging than the discrete crack method. However, this simplicity brings loss of accuracy. We propose a novel simplified and highly efficient meshless method for discrete cracks and study fracture of concrete. The method exploits the advantages of smeared crack method and maintains the accuracy of discrete crack method. The discrete crack is modeled by set of discrete crack segments placed through the entire domain of influence of a node. We use Neo-Hooke material in the bulk material and a cohesive zone model once discrete cracks occur. We demonstrate the accuracy of the proposed meshless discrete crack method for complex problems involving mode-I and mixed mode failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbari, A., Bagri, R., Bordas, S. P. A., and Rabczuk, T. (2010). “Analysis of thermoelastic waves in a twodimensional functionally graded materials domain by the meshless local petrov galerkin (mlpg) method.” CMES-Computer Modeling in Engineering and Sciences, Vol. 65, No. 1, pp. 27–74.

    MATH  MathSciNet  Google Scholar 

  • Areias, P. M. A. and Rabczuk, T. (2008). “Quasi-static crack propagation in plane and plate structures usingset-valuedtraction-separation laws.” International Journal for Numerical Methods in Engineering, Vol. 74, No. 3, pp. 475–505.

    Article  MATH  Google Scholar 

  • Areias, P. M. A. and Rabczuk, T. (2010). “Smooth finite strain plasticity with non-local pressure support.” International Journal for Numerical Methods in Engineering, Vol. 81, No. 1, pp. 106–134.

    MATH  Google Scholar 

  • Ballatore, E., Carpinteri, A., Ferrara, G., and Melchiorri, G. (1990). “Mixedmode fracture energy of concrete.” Engineering Fracture Mechanics, Vol. 35, No. 2, pp. 145–157.

    Article  Google Scholar 

  • Bazant, Z. P. and Pfeiffer, P. A. (1986). “Shear fracture tests of concrete.” Mater. Struct., Vol. 19, No. 1, pp. 111–121.

    Article  Google Scholar 

  • Belytschko, T., Lu, Y. Y., and Gu, L. (1994a). “Crack propagation byelement-free galkerin methods.” Engineering Fracture Mechanics, Vol. 51, No. 3, pp. 295–315.

    MathSciNet  Google Scholar 

  • Belytschko, T., Lu, Y. Y., and Gu, L. (1994b). “Element-free galerkin methods.” International Journal for Numerical Methods in Engineering, Vol. 37, No. 2, pp. 229–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. (1996). “Meshless methods: An overview and recent developments.” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 2, pp. 3–47.

    Article  MATH  Google Scholar 

  • Belytschko, T. and Tabbara, M. (1996). “Dynamic fracture using element-free galerkin methods.” International Journal for Numerical Methods in Engineering, Vol. 39, No. 6, pp. 923–938.

    Article  MATH  Google Scholar 

  • Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Natarajan, S., Bog, T., Nguyen, V. P., Quan, D. M., and Nguyen, V. H. (2010). “Strain smoothing in fem and xfem.” Computers and Structures, Vol. 88, Nos. 23–24, pp. 1419–1443.

    Article  Google Scholar 

  • Bordas, S., Rabczuk, T., and Zi, G. (2008). “Three-dimensional crack initiation, propagation, branchingand junction in non-linear materials byextrinsic discontinuous enrichmentofmeshfree methods without asymptotic enrichment.” Engineering Fracture Mechanics, Vol. 75, No. 5, pp. 943–960.

    Article  Google Scholar 

  • Cusatis, G., Bazant, Z. P., and Cedolin, L. (2006). “Confinement-shear lattice csl model for fracture propagation in concrete.” Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 8, pp. 7154–7171.

    Article  MATH  Google Scholar 

  • Duarte, C. A. M. and Oden, J. T. (1996). “An h-p adaptive method using clouds.” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 4, pp. 237–262

    Article  MATH  MathSciNet  Google Scholar 

  • Hillerborg, A. (1985a). “The theoretical basis of method to determine the fracture energy of concrete.” Mater Struct, Vol. 18, No. 2, pp. 291–296.

    Article  Google Scholar 

  • Hillerborg, A. (1985b). “Results of three comparative test series for determining the fracture energy of concrete.” Mater Struct, Vol. 18, No. 11, p. 107.

    Google Scholar 

  • Hillerborg, A., Modeer, M., and Peterson, P. E. (1976). “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.” Cement and Concrete Research, Vol. 6, No. 7, pp. 773–782

    Article  Google Scholar 

  • Larsson, R. and Fagerstrom, M. (2005). “A framework for fracture modelling based on the material forces concept with xfem kinematics.” International Journal for Numerical Methods in Engineering, Vol. 62, No. 1763-1788.

  • Le, P. B. E., Rabczuk, T., Mai-Duy, N., and Tran-Cong, T. (2010a). “Amoving local irbfn based galerkin meshless method.” CMES-Computer Modeling in Engineering and Sciences, Vol. 66, No. 1, pp. 25–52.

    MATH  MathSciNet  Google Scholar 

  • Le, P. B. E., Rabczuk, T., Mai-Duy, N., and Tran-Cong, T. (2010b). “Amoving irbfn based integration-free meshless method.” CMES-Computer Modeling in Engineering and Sciences, Vol. 61, No. 1, pp. 63–109.

    MATH  MathSciNet  Google Scholar 

  • Le Canh, V., Nguyen-Xuan, H., Askes, H., Bordas, S., Rabczuk, T., and Nguyen-Vinh, H. (2010). “A cell based smoothed finite element method for kinematic limit analysis.” International Journal for Numerical Methods in Engineering, Vol. 83, No. 12, pp. 1651–1674.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W. K., Jun, S., and Zhang. Y. F. (1995). “Reproducing kernel particle methods.” International Journal for Numerical Methods in Engineering, Vol. 20, No. 2, pp. 1081–1106.

    MATH  MathSciNet  Google Scholar 

  • Melenk, J. M. and Babuska, I. (1996). “The partition of unity finite element method: Basic theory and applications.” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 4, pp. 289–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen, V. P., Rabczuk, T., Bordas, S., and Duflot, M. (2008). “Meshless methods: A review and computer implementation aspects.” Mathematics and Computers in Simulation, Vol. 79, No. 3, pp. 763–813.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S. P. A., and Rabczuk, T. (2011a). “Isogeometric analysis using polynomial splines over hierarchical t-meshes for two-dimensional elastic solids.” Computer Methods in Applied Mechanics and Engineering, Vol. 200, Nos. 21–22, pp. 1892–1908.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., and Bordas, S (2008). “A smoothed finite element method for shell analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 2, pp. 165–177.

    Article  MATH  Google Scholar 

  • Nguyen-Thanh, N., Rabczuk, T., Nuyen-Xuan, H, and Bordas, S. (2010b) “An alternative alpha finite element method free and forced vibration analysis of solids using triangular meshes.” Journal of Computational and Applied Mathematics, Vol. 233, No. 9, pp. 2112–2135.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thanhm N., Rabczuk, T., Nguyen-Xuan, H., and Bordas, S. (2011b). “An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic mindlin-reissner plates.” Finite Elements in Analysis and Design, Vol. 47, No. 5, pp. 519–535.

    Article  Google Scholar 

  • Nguyen-Thanh, H., Rabczuk, T, Nuyen-Thanh, N., Nguyen-Thoi, T., and Bordas, S. (2010a) “A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of reissner-mindlin plates.” Computational mechanics, Vol. 46, No. 5, pp. 679–701.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Vu-Do, H. C., Rabczuk, T., and Nguyen-Xuan, H. (2010). “A node-based smoothed finite element method (ns-fem) for upper bound solution to viscoelastoplastic analysis of solids using triangular and tetrahedral meshes.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 45–48, pp. 3005–2027.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Xuan, H., Rabczuk, T., Bordas, S., and Debongnie, J. F. (2008). “A smoothed finiteelement method for plate analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 13–16, pp. 1184–1203.

    Article  MATH  Google Scholar 

  • Nooru-Mohamed, M. B. (1992). Mixed-mode fracture of concrete: An experimental approach, PhD Thesis, Delft University of Technology.

  • Organ, D., Fleming, M., Terry, T., and Belytschko, T. (1996). “Continuous meshless approximations for nonconvex bodies by diffraction and transparency.” Computational Mechanics, Vol. 18, No. 225–235.

  • Ortiz, M., Leroy, Y., and Needleman, A. (1987). “Finite element method for localized failure analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 61, Nos. 8–9, pp. 189–213.

    Article  MATH  Google Scholar 

  • Plotzitza, A., Rabczuk, T., and Eibl, J. (2007). “Techniques for numerical simulations of concrete slabs for demolishing by blasting.” Journal of Engineering Mechanics, Vol. 133, No. 5, pp. 523–533.

    Article  Google Scholar 

  • Rabczuk, T., Akkermann, J., and Eibl, J. (2005). “A numerical model for reinforced concrete structures.” International Journal of Solids and Structures, Vol. 42, Nos. 5–6, pp. 1327–1354.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Areias, P. (2006A). “A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis.” Computer Modeling in Engineering & Sciences, Vol. 16, No. 2, pp. 115–130.

    Google Scholar 

  • Rabczuk, T. and Areias, P. M. A. (2006b). “A new approach for modelling slip lines in geological materials with cohesive models.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, No. 11, pp. 1159–1172.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007a). “A meshfree thin shell method for non-linear dynamic fracture.” International Journal for Numerical Methodsin Engineering, Vol. 72, No. 5, pp. 524–548.

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007c). “A simplified mesh-free method for shear bands with cohesive surfaces.” International Journal for Numerical Methods in Engineering, Vol. 69, No. 5, pp. 993–1021.

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2004). “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2005). “Adaptivity for structured meshfree particle methods in 2d and 3d.” International Journal for Numerical Methods in Engineering, Vol. 63, No. 11, pp. 1559–1582.

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2006). “Application of particle methods to static fracture of reinforced concrete structures.” International Journal of Fracture, Vol. 137, Nos. 1–4, pp. 19–49.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2007). “A three dimensional large deformation meshfree method for arbitrary evolving cracks.” Computer MethodsinApplied Mechanics and Engineering, Vol. 196, Nos. 29–30, pp. 2777–2799.

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Belytschko, T., and Xiao, S. P. (2004a). “Stable particle methods based on lagrangian kernels.” Computer Methods in Applied Mechanics and Engineering, Vol. 193, Nos. 12–14, pp. 1035–1063.

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi, G. (2007b). “A three dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics.” Computational Mechanics, Vol. 40, No. 3, pp. 473–495.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi,, G. (2010a). “On three dimensional modelling of crack growth using partition of unity methods.” Computersand Structures, Vol. 88, Nos. 23–24, pp. 1391–1411.

    Article  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2003). “Simulation of high velocity concrete fragmentation using SPH/MLSPH.” International Journal for Numerical Methods in Engineering, Vol. 56, No. 10, pp. 1421–1444.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2004). “Numerical analysis of prestressed concrete beams using a coupled element free galerkin/finite element method.” International Journal of Solids and Structures, Vol. 41, Nos. 3–4, pp. 1061–1080.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2006) “Modelling dynamic failure of concrete with meshfree methods.” International Journal of Impact Engineering, Vol. 32, No. 11, pp. 1878–1897.

    Article  Google Scholar 

  • Rabczuk, T., Eibl, J., and Stempniewski, L. (2004b). “Numerical analysis of high speed concrete fragmentation using a meshfree lagrangian method.” Engineering Fracture Mechanics, Vol. 71, Nos. 4–6, pp. 547–556.

    Article  Google Scholar 

  • Rabczuk, T., Gracie, R., Song, J.-H., and Belytschko, T. (2010b). “Immersed particle method for fluid-structure interaction.” International Journal for Numerical Methods in Engineering, Vol. 81, pp. 48–71.

    MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Kim, J. Y., Samaniego, E., and Belytschko, T. (2004c). “Homogenization of sandwich structures.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 7, pp. 1009–1027.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Samaniego, E. (2008). “Discontinuous modelling of shear bands using adaptive meshfree methods.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, pp. 641–658.

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Samaniego, E., and Belytschko, T. (2007d). “Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction.” International Journal of Impact Engineering, Vol. 34, No. 2, pp. 163–177.

    Article  Google Scholar 

  • Rabczuk, T., Song, J.-H., and Belytschko, T. (2009). “Simulations of instability in dynamic fracture by the cracking particles method.” Engineering Fracture Mechanics, Vol. 76, No. 6, pp. 730–741.

    Article  Google Scholar 

  • Rabczuk, T., Xiao, S. P., and Sauer, A. (2006). “Coupling of mesh-free methods with finite elements: Basic concepts and test results.” Communications in Numerical Methods in Engineering, Vol. 22, No. 10, pp. 1031–1065.

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T. and Zi, G. (2007). “A meshfree method based on the local partition of unity for cohesive cracks.” Computational Mechanics, Vol. 39, No. 6, pp. 743–760.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2008a). “A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures.” Engineering Fracture Mechanics, Vol. 75, No. 16, pp. 4740–4758.

    Article  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010c). “A simple and robust three dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 37–40, pp. 2437–2455.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Gerstenberger, A., and Wall, W. A. (2008b). “A new crack tip element for the phantom node method with arbitrary cohesive cracks.” International Journal for Numerical Methods in Engineering, Vol. 75, No. 5, pp. 577–599.

    Article  MATH  Google Scholar 

  • Rajagopal, S. and Gupta, N. (2011). “Meshfree modelling of fracturea comparative study of different methods.” Meccanica, pages DOI 10.1007/s11012.010.9367.z.

  • Sun, Y., Hu, Y. G., and Liew, K. M. (2007). “A mesh-free simulation of cracking and failure using the cohesive segments method.” International Journal of Engineering Science, Vol. 45, No. 3, pp. 541–553

    Article  MATH  Google Scholar 

  • Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H., and Rabczuk, T. (2011a). “An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates.” Applied Mathematics and Computation, Vol. 217, No. 17, pp. 7324–7348.

    Article  MATH  MathSciNet  Google Scholar 

  • Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H., Rabczuk, T., and Bordas, S. (2011b). “A cell-based smoothed finite element method for free vibration and buckling analysis of shells.” KSCE Journal of Civil Engineering, Vol. 15, No. 2, pp. 347–361.

    Article  Google Scholar 

  • Ventura, G., Xu, J., and Belytschko, T. (2002). “A vector level set method and new discontinuity approximation for crack growth by efg.” International Journal for Numerical Methods in Engineering, Vol. 54, No. 6, pp. 923–944.

    Article  MATH  Google Scholar 

  • Wall, W. A. and Rabczuk, T. (2008). “Fluid-structure interaction in lower airways of ct-based lung geometries.” International Journal for Numerical Methods in Fluids, Vol. 57, No. 5, pp. 653–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, X.-P. and Needleman, A. (1994). “Numerical simulations of fast crack growth in brittle solids.” Journal of the Mechanics and Physics of Solids, Vol. 42, No. 1, pp. 1397–1434.

    Article  MATH  Google Scholar 

  • Zi, G., Rabczuk, T., and Wall, W. (2007). “Extended meshfree methods without branch enrichment for cohesive cracks.” Computational Mechanics, Vol. 40, No. 2, pp. 367–382.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sagaresan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagaresan, N. Modeling fracture of concrete with a simplified meshless discrete crack method. KSCE J Civ Eng 16, 417–425 (2012). https://doi.org/10.1007/s12205-012-1480-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-012-1480-1

Keywords

Navigation