Skip to main content
Log in

Applications of Polypeptide Hydrogels in Cartilage-Regeneration Engineering

多肽水凝胶在软骨再生工程中的应用

  • Review
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Articular cartilage defects are considered to be associated with the development of osteoarthritis. Research on relevant tissue regeneration is important in the treatment of osteoarthritis. The scaffolds applied in cartilage regeneration should have good histocompatibility and mechanical properties, as well as no cytotoxicity, and promote the proliferation and differentiation of seed cells. Different combinations of peptide sequences in polypeptide hydrogels endow them with unique characteristics including excellent biodegradability and accurate simulation of the extracellular matrix of chondrocytes to maintain the stability of the chondrogenic phenotype and facilitate articular hyaline cartilage regeneration. Thus, the application of polypeptide hydrogels for cartilage regeneration has a bright future. In this study, the research progress of polypeptide hydrogels used in cartilage-regeneration engineering is systematically reviewed. The characteristics, limitations, and prospects of these materials are evaluated.

摘要

关节软骨缺损被认为与骨关节炎的发展有关. 相关组织再生的研究在骨关节炎的治疗中具有重要意义. 用于软骨再生的支架应具有良好的组织相容性, 力学性能及无细胞毒性, 并能促进种子细胞的增殖和分化. 多肽水凝胶中多肽序列的不同组合使其具有优异的生物可降解性和准确模拟软骨细胞细胞外基质的独特特性, 以维持软骨表型的稳定性及促进关节透明软骨的再生. 因此, 多肽水凝胶在软骨再生中的应用前景广阔. 本文系统综述了多肽水凝胶在软骨再生工程中的研究进展. 对这些材料的特点、局限性和前景进行了评价.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GLYN-JONES S, PALMER A J R, AGRICOLA R, et al. Osteoarthritis [J]. The Lancet, 2015, 386(9991): 376–387.

    Google Scholar 

  2. JIN X Z, JONES G, CICUTTINI F, et al. Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: A randomized clinical trial [J]. JAMA, 2016, 315(10): 1005–1013.

    Google Scholar 

  3. ARMIENTO A R, STODDART M J, ALINI M, et al. Biomaterials for articular cartilage tissue engineering: Learning from biology [J]. Acta Biomaterialia, 2018, 65: 1–20.

    Google Scholar 

  4. LUO Y Y, SINKEVICIUTE D, HE Y, et al. The minor collagens in articular cartilage [J]. Protein & Cell, 2017, 8(8): 560–572.

    Google Scholar 

  5. GUILAK F, NIMS R J, DICKS A, et al. Osteoarthritis as a disease of the cartilage pericellular matrix [J]. Matrix Biology, 2018, 71/72: 40–50.

    Google Scholar 

  6. KÜHN K, D’LIMA D D, HASHIMOTO S, et al. Cell death in cartilage [J]. Osteoarthritis and Cartilage, 2004, 12(1): 1–16.

    Google Scholar 

  7. KWON H, BROWN W E, LEE C A, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair [J]. Nature Reviews Rheumatology, 2019, 15(9): 550–570.

    Google Scholar 

  8. CUCCHIARINI M, MADRY H. Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair [J]. Nature Reviews Rheumatology, 2019, 15(1): 18–29.

    Google Scholar 

  9. TEMENOFF J S, MIKOS A G. Review: Tissue engineering for regeneration of articular cartilage [J]. Biomaterials, 2000, 21(5): 431–440.

    Google Scholar 

  10. ORYAN A, SAHVIEH S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing [J]. International Journal of Biological Macromolecules, 2017, 104: 1003–1011.

    Google Scholar 

  11. GUO T, NOSHIN M, BAKER H B, et al. 3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects [J]. Biomaterials, 2018, 185: 219–231.

    Google Scholar 

  12. MAKRIS E A, GOMOLL A H, MALIZOS K N, et al. Repair and tissue engineering techniques for articular cartilage [J]. Nature Reviews Rheumatology, 2015, 11(1): 21–34.

    Google Scholar 

  13. GUO T, FERLIN K M, KAPLAN D S, et al. Engineering niches for cartilage tissue regeneration [M]//Biology and engineering of stem cell niches. Boston: Academic Press, 2017.

    Google Scholar 

  14. NIE X L, CHUAH Y J, ZHU W Z, et al. Decellularized tissue engineered hyaline cartilage graft for articular cartilage repair [J]. Biomaterials, 2020, 235: 119821.

    Google Scholar 

  15. RINGE J, BURMESTER G R, SITTINGER M. Regenerative medicine in rheumatic disease: Progress in tissue engineering [J]. Nature Reviews Rheumatology, 2012, 8(8): 493–498.

    Google Scholar 

  16. HUANG B J, HU J C, ATHANASIOU K A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage [J]. Biomaterials, 2016, 98: 1–22.

    Google Scholar 

  17. JIANG Y Z, TUAN R S. Origin and function of cartilage stem/progenitor cells in osteoarthritis [J]. Nature Reviews Rheumatology, 2015, 11(4): 206–212.

    Google Scholar 

  18. GRACEFFA V, VINATIER C, GUICHEUX J, et al. Chasing chimeras: The elusive stable chondrogenic phenotype [J]. Biomaterials, 2019, 192: 199–225.

    Google Scholar 

  19. LEE H P, GU L, MOONEY D J, et al. Mechanical confinement regulates cartilage matrix formation by chondrocytes [J]. Nature Materials, 2017, 16(12): 1243–1251.

    Google Scholar 

  20. WANG Y, CHEN Y, XU Y, et al. Effects of the bonding intensity between hyaluronan and gelatin on chondrogenic phenotypic maintenance [J]. Journal of Materials Chemistry B, 2020, 8: 9062–9074.

    Google Scholar 

  21. VÁZQUEZ-GONZÁLEZ M, WILLNER I. Stimuli-responsive biomolecule-based hydrogels and their applications [J]. Angewandte Chemie International Edition, 2020, 59(36): 15342–15377.

    Google Scholar 

  22. GAO J, ZHAN J, YANG Z M. Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides [J]. Advanced Materials, 2020, 32(3): 1805798.

    Google Scholar 

  23. DING X, ZHAO H M, LI Y Z, et al. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering [J]. Advanced Drug Delivery Reviews, 2020, 160: 78–104.

    Google Scholar 

  24. FRENCH K M, SOMASUNTHARAM I, DAVIS M E. Self-assembling peptide-based delivery of therapeutics for myocardial infarction [J]. Advanced Drug Delivery Reviews, 2016, 96: 40–53.

    Google Scholar 

  25. REN K X, HE C L, XIAO C S, et al. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering [J]. Biomaterials, 2015, 51: 238–249.

    Google Scholar 

  26. FU K, WU H G, SU Z Q. Self-assembling peptide-based hydrogels: Fabrication, properties, and applications [J]. Biotechnology Advances, 2021, 49: 107752.

    Google Scholar 

  27. CALIARI S R, BURDICK J A. A practical guide to hydrogels for cell culture [J]. Nature Methods, 2016, 13(5): 405–414.

    Google Scholar 

  28. CAI L L, LIU S, GUO J W, et al. Polypeptide-based self-healing hydrogels: Design and biomedical applications [J]. Acta Biomaterialia, 2020, 113: 84–100.

    Google Scholar 

  29. SONG Z Y, HAN Z Y, LV S X, et al. Synthetic polypeptides: From polymer design to supramolecular assembly and biomedical application [J]. Chemical Society Reviews, 2017, 46(21): 6570–6599.

    Google Scholar 

  30. LU Z H, LIU S J, LE Y G, et al. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis [J]. Biomaterials, 2019, 218: 119190.

    Google Scholar 

  31. MREDHA M T I, KITAMURA N, NONOYAMA T, et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone [J]. Biomaterials, 2017, 132: 85–95.

    Google Scholar 

  32. SHI W L, SUN M Y, HU X Q, et al. Structurally and functionally optimized silk-fibroin—gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo [J]. Advanced Materials, 2017, 29(29): 1701089.

    Google Scholar 

  33. AISENBREY E A, BRYANT S J. The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading [J]. Biomaterials, 2019, 190/191: 51–62.

    Google Scholar 

  34. PARMAR P A, CHOW L W, ST-PIERRE J P, et al. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration [J]. Biomaterials, 2015, 54: 213–225.

    Google Scholar 

  35. CHEN Z Y, ZHANG Q, LI H M, et al. Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair [J]. Bioactive Materials, 2021, 6(3): 589–601.

    Google Scholar 

  36. HONG H, SEO Y B, KIM D Y, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering [J]. Biomaterials, 2020, 232: 119679.

    Google Scholar 

  37. QI C, LIU J, JIN Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage [J]. Biomaterials, 2018, 163: 89–104.

    Google Scholar 

  38. LIU H, CHENG Y L, CHEN J J, et al. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair [J]. Acta Biomaterialia, 2018, 73: 103–111.

    Google Scholar 

  39. LEE S S, CHOI G E, LEE H J, et al. Layered double hydroxide and polypeptide thermogel nanocomposite system for chondrogenic differentiation of stem cells [J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42668–42675.

    Google Scholar 

  40. KIM S H, LEE H R, YU S J, et al. Hydrogel-laden paper scaffold system for origami-based tissue engineering [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): 15426–15431.

    Google Scholar 

  41. LAM J, CLARK E C, FONG E L S, et al. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissue engineering [J]. Biomaterials, 2016, 83: 332–346.

    Google Scholar 

  42. LIN C, CROWLEY S T, UCHIDA S, et al. Treatment of intervertebral disk disease by the administration of mRNA encoding a cartilage-anabolic transcription factor [J]. Molecular Therapy: Nucleic Acids, 2019, 16: 162–171.

    Google Scholar 

  43. LI R, XU J B, WONG D S H, et al. Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling [J]. Biomaterials, 2017, 145: 33–43.

    Google Scholar 

  44. KIM S J, KIM J E, KIM S H, et al. Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model [J]. Biomaterials, 2016, 74: 119–130.

    Google Scholar 

  45. LU J J, SHEN X Z, SUN X, et al. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration [J]. Theranostics, 2018, 8(18): 5039–5058.

    Google Scholar 

  46. ALMEIDA H V, ESWARAMOORTHY R, CUNNIFFE G M, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration [J]. Acta Biomaterialia, 2016, 36: 55–62.

    Google Scholar 

  47. USTUN YAYLACI S, SARDAN EKIZ M, ARSLAN E, et al. Supramolecular GAG-like self-assembled glycopeptide nanofibers induce chondrogenesis and cartilage regeneration [J]. Biomacromolecules, 2016, 17(2): 679–689.

    Google Scholar 

  48. VEGA S L, KWON M Y, SONG K H, et al. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments [J]. Nature Communications, 2018, 9: 614.

    Google Scholar 

  49. ARMIENTO A R, ALINI M, STODDART M J. Articular fibrocartilage — Why does hyaline cartilage fail to repair? [J]. Advanced Drug Delivery Reviews, 2019, 146: 289–305.

    Google Scholar 

  50. GU L S, SHAN T T, MA Y X, et al. Novel biomedical applications of crosslinked collagen [J]. Trends in Biotechnology, 2019, 37(5): 464–491.

    Google Scholar 

  51. SORUSHANOVA A, DELGADO L M, WU Z N, et al. The collagen suprafamily: From biosynthesis to advanced biomaterial development [J]. Advanced Materials, 2019, 31(1): 1801651.

    Google Scholar 

  52. KLOTZ B J, GAWLITTA D, ROSENBERG A J W P, et al. Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair [J]. Trends in Biotechnology, 2016, 34(5): 394–407.

    Google Scholar 

  53. ALTUNBAS A, POCHAN D J. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering [J]. Topics in Current Chemistry, 2012, 310: 135–167.

    Google Scholar 

  54. DALY A C, CRITCHLEY S E, RENCSOK E M, et al. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage [J]. Biofabrication, 2016, 8(4): 045002.

    Google Scholar 

  55. HAN L, XU J L, LU X, et al. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair [J]. Journal of Materials Chemistry B, 2017, 5(4): 731–741.

    Google Scholar 

  56. HAN L, WANG M H, LI P F, et al. Mussel-inspired tissue-adhesive hydrogel based on the polydopamine—chondroitin sulfate complex for growth-factor-free cartilage regeneration [J]. ACS Applied Materials & Interfaces, 2018, 10(33): 28015–28026.

    Google Scholar 

  57. GAN D L, XU T, XING W S, et al. Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration [J]. Journal of Materials Chemistry B, 2019, 7(10): 1716–1725.

    Google Scholar 

  58. PARMAR P A, ST-PIERRE J P, CHOW L W, et al. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels [J]. Acta Biomaterialia, 2017, 51: 75–88.

    Google Scholar 

  59. PARMAR P A, SKAALURE S C, CHOW L W, et al. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells [J]. Biomaterials, 2016, 99: 56–71.

    Google Scholar 

  60. PENG Y Y, YOSHIZUMI A, DANON S J, et al. A Streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial [J]. Biomaterials, 2010, 31(10): 2755–2761.

    Google Scholar 

  61. GHOLIPOURMALEKABADI M, SAPRU S, SAMADIKUCHAKSARAEI A, et al. Silk fibroin for skin injury repair: Where do things stand? [J]. Advanced Drug Delivery Reviews, 2020, 153: 28–53.

    Google Scholar 

  62. CHENG G, DAVOUDI Z, XING X, et al. Advanced silk fibroin biomaterials for cartilage regeneration [J]. ACS Biomaterials Science & Engineering, 2018, 4(8): 2704–2715.

    Google Scholar 

  63. DU S, ZHANG J, ZHOU W T, et al. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers [J]. Journal of Colloid and Interface Science, 2016, 478: 316–323.

    Google Scholar 

  64. KIM S H, YEON Y K, LEE J M, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing [J]. Nature Communications, 2018, 9: 1620.

    Google Scholar 

  65. BASU A, KUNDURU K R, KATZHENDLER J, et al. Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid [J]. Advanced Drug Delivery Reviews, 2016, 107: 82–96.

    Google Scholar 

  66. GELAIN F, SILVA D, CAPRINI A, et al. BMHP1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications [J]. ACS Nano, 2011, 5(3): 1845–1859.

    Google Scholar 

  67. ZAMUNER A, CAVO M, SCAGLIONE S, et al. Design of decorated self-assembling peptide hydrogels as architecture for mesenchymal stem cells [J]. Materials, 2016, 9(9): 727.

    Google Scholar 

  68. CAO F Y, YIN W N, FAN J X, et al. A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells [J]. Biomaterials Science, 2015, 3(2): 345–351.

    Google Scholar 

  69. BOGUNOVIC L, WETTERS N G, JAIN A, et al. In vitro analysis of micronized cartilage stability in the knee: Effect of fibrin level, defect size, and defect location [J]. Arthroscopy: the Journal of Arthroscopic & Related Surgery, 2019, 35(4): 1212–1218.

    Google Scholar 

  70. PENG Z, SUN H, BUNPETCH V, et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration [J]. Biomaterials, 2021, 268: 120555.

    Google Scholar 

  71. KIM J S, KIM T H, KANG D L, et al. Chondrogenic differentiation of human ASCs by stiffness control in 3D fibrin hydrogel [J]. Biochemical and Biophysical Research Communications, 2020, 522(1): 213–219.

    Google Scholar 

  72. DE MELO B A G, JODAT Y A, MEHROTRA S, et al. 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties [J]. Advanced Functional Materials, 2019, 29(51): 1906330.

    Google Scholar 

  73. KARGARPOUR Z, NASIRZADE J, STRAUSS F J, et al. Platelet-rich fibrin suppresses in vitro osteoclastogenesis [J]. Journal of Periodontology, 2020, 91(3): 413–421.

    Google Scholar 

  74. WONG C C, OU K L, LIN Y H, et al. Platelet-rich fibrin facilitates one-stage cartilage repair by promoting chondrocytes viability, migration, and matrix synthesis [J]. International Journal of Molecular Sciences, 2020, 21(2): 577.

    Google Scholar 

  75. MCDERMOTT I D. Patellar chondral defect treatment with a cell-free polyglycolic acid-hyaluronan-based implant and platelet-rich fibrin glue after previously failed microfracture [J]. SAGE Open Medical Case Reports, 2019, 7: 2050313X18823470.

    Google Scholar 

  76. BARBON S, STOCCO E, MACCHI V, et al. Platelet-rich fibrin scaffolds for cartilage and tendon regenerative medicine: From bench to bedside [J]. International Journal of Molecular Sciences, 2019, 20(7): 1701.

    Google Scholar 

  77. TIWARI S, BAHADUR P. Modified hyaluronic acid based materials for biomedical applications [J]. International Journal of Biological Macromolecules, 2019, 121: 556–571.

    Google Scholar 

  78. ACAR H, SRIVASTAVA S, CHUNG E J, et al. Self-assembling peptide-based building blocks in medical applications [J]. Advanced Drug Delivery Reviews, 2017, 110/111: 65–79.

    Google Scholar 

  79. OKESOLA B O, WU Y H, DERKUS B, et al. Supramolecular self-assembly to control structural and biological properties of multicomponent hydrogels [J]. Chemistry of Materials, 2019, 31(19): 7883–7897.

    Google Scholar 

  80. WOLF K J, KUMAR S. Hyaluronic acid: Incorporating the bio into the material [J]. ACS Biomaterials Science & Engineering, 2019, 5(8): 3753–3765.

    Google Scholar 

  81. DOU X Q, FENG C L. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture [J]. Advanced Materials, 2017, 29(16): 1604062.

    Google Scholar 

  82. LI S Y, WANG X, CAO B, et al. Effects of nanoscale spatial arrangement of arginine-glycine-aspartate peptides on dedifferentiation of chondrocytes [J]. Nano Letters, 2015, 15(11): 7755–7765.

    Google Scholar 

  83. QIAO Y S, LIU X Z, ZHOU X C, et al. Gelatin templated polypeptide co-cross-linked hydrogel for bone regeneration [J]. Advanced Healthcare Materials, 2020, 9(1): 1901239.

    Google Scholar 

  84. THAMBI T, LI Y, LEE D S. Injectable hydrogels for sustained release of therapeutic agents [J]. Journal of Controlled Release, 2017, 267: 57–66.

    Google Scholar 

  85. ZHENG H Y, YOSHITOMI T, YOSHIMOTO K. Analysis of chirality effects on stem cell fate using three-dimensional fibrous peptide hydrogels [J]. ACS Applied Bio Materials, 2018, 1(3): 538–543.

    Google Scholar 

  86. UMAN S, DHAND A, BURDICK J A. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications [J]. Journal of Applied Polymer Science, 2020, 137(25): 48668.

    Google Scholar 

  87. YADAV N, CHAUHAN M K, CHAUHAN V S. Short to ultrashort peptide-based hydrogels as a platform for biomedical applications [J]. Biomaterials Science, 2020, 8(1): 84–100.

    Google Scholar 

  88. O’BRIEN S, BRANNIGAN R P, IBANEZ R, et al. Biocompatible polypeptide-based interpenetrating network (IPN) hydrogels with enhanced mechanical properties [J]. Journal of Materials Chemistry B, 2020, 8(34): 7785–7791.

    Google Scholar 

  89. OKESOLA B O, LAU H K, DERKUS B, et al. Covalent co-assembly between resilin-like polypeptide and peptide amphiphile into hydrogels with controlled nanostructure and improved mechanical properties [J]. Biomaterials Science, 2020, 8(3): 846–857.

    Google Scholar 

  90. ANNABI N, RANA D, SANI E S, et al. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing [J]. Biomaterials, 2017, 139: 229–243.

    Google Scholar 

  91. JIN H L, WAN C, ZOU Z W, et al. Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel [J]. ACS Nano, 2018, 12(4): 3295–3310.

    Google Scholar 

  92. GRIFFIN D R, ARCHANG M M, KUAN C H, et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing [J]. Nature Materials, 2021, 20(4): 560–569.

    Google Scholar 

  93. FAROKHI M, MOTTAGHITALAB F, FATAHI Y, et al. Overview of silk fibroin use in wound dressings [J]. Trends in Biotechnology, 2018, 36(9): 907–922.

    Google Scholar 

  94. KOIVUSALO L, KAUPPILA M, SAMANTA S, et al. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma [J]. Biomaterials, 2019, 225: 119516.

    Google Scholar 

  95. ZHU D Q, WANG H Y, TRINH P, et al. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration [J]. Biomaterials, 2017, 127: 132–140.

    Google Scholar 

  96. ZHANG X Z, CAI D D, ZHOU F F, et al. Targeting downstream subcellular YAP activity as a function of matrix stiffness with Verteporfin-encapsulated chitosan microsphere attenuates osteoarthritis [J]. Biomaterials, 2020, 232: 119724.

    Google Scholar 

  97. DAVIDSON M D, BAN E, SCHOONEN A C M, et al. Mechanochemical adhesion and plasticity in multi-fiber hydrogel networks [J]. Advanced Materials, 2020, 32(8): 1905719.

    Google Scholar 

  98. YANG J R, LI Y Q, LIU Y B, et al. Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo [J]. Acta Biomaterialia, 2019, 91: 159–172.

    Google Scholar 

  99. JEYAKUMAR V, NICULESCU-MORZSA E, BAUER C, et al. Redifferentiation of articular chondrocytes by hyperacute serum and platelet rich plasma in collagen type I hydrogels [J]. International Journal of Molecular Sciences, 2019, 20(2): 316.

    Google Scholar 

  100. BRETSCHNEIDER H, STIEHLER M, HARTMANN A, et al. Characterization of primary chondrocytes harvested from hips with femoroacetabular impingement [J]. Osteoarthritis and Cartilage, 2016, 24(9): 1622–1628.

    Google Scholar 

  101. NOVAK T, SEELBINDER B, TWITCHELL C M, et al. Mechanisms and microenvironment investigation of cellularized high density gradient collagen matrices via densification [J]. Advanced Functional Materials, 2016, 26(16): 2617–2628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayu Lu  (陆家瑜).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 82071160, 81870806, 81800935 and 81974152), the Special Fund for Scientific and Technological Innovation of Shanghai Jiao Tong University (No. ZH2018ZDB09), the “Double Hundred” Project of Shanghai Jiao Tong University School of Medicine (No. 20191832), the Project of the Innovative Research Team of High-Level Local Universities in Shanghai (No. SSMU-ZDCX20180900), the Advanced Research Program of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (No. ynlc201810), and the Project of the Science and Technology Commission of Shanghai Municipality (No. 18DZ2260200)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhu, Z., Teng, L. et al. Applications of Polypeptide Hydrogels in Cartilage-Regeneration Engineering. J. Shanghai Jiaotong Univ. (Sci.) 28, 468–485 (2023). https://doi.org/10.1007/s12204-022-2507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2507-5

Key words

关键词

CLC number

Document code

Navigation