Skip to main content
Log in

Guided properties and applications of photonic bandgap fibers

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

The authors have reviewed some of their recent studies on photonic bandgap fibers (PBGFs). PBGFs that confine light in the core by the photonic bandgap effect of cladding have potential applications in various photonic devices. In this paper, the guided properties and tuned mechanics of anti-resonant PBGFs are theoretically illustrated. The special coupling properties in multi-core PBGFs, such as decoupling and resonant coupling effect, are then introduced. Finally, fiber Bragg grating inscribed in all-solid PBGFs is theoretically and experimentally studied, and special resonant characteristics are also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963

    Article  Google Scholar 

  2. Knight J C, Arriaga J, Birks T A, et al. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 2000, 12(7): 807–809

    Article  Google Scholar 

  3. Broderick N G R, Monro T M, Bennett P J, et al. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 1999, 24(20): 1395–1397

    Article  Google Scholar 

  4. Knight J C. Photonic crystal fibres. Nature, 2003, 424(6950): 847–851

    Article  Google Scholar 

  5. Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537–1539

    Article  Google Scholar 

  6. Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber. Optics Letters, 2006, 31(24): 3574–3576

    Article  Google Scholar 

  7. Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592): 399–402

    Article  Google Scholar 

  8. Ouzounov D G, Ahmad F R, Müller D, et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 2003, 301(5640): 1702–1704

    Article  Google Scholar 

  9. Limpert J, Schreiber T, Nolte S, et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber. Optics Express, 2003, 11(24): 3332–3337

    Article  Google Scholar 

  10. Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 2002, 27(18): 1592–1594

    Article  Google Scholar 

  11. Litchinitser N M, Dunn S C, Steinvurzel P E, et al. Application of an ARROW model for designing tunable photonic devices. Optics Express, 2004, 12(8): 1540–1550

    Article  Google Scholar 

  12. Argyros A, Birks T A, Leon-Saval S G, et al. Guidance properties of low-contrast photonic bandgap fibres. Optics Express, 2005, 13(7): 2503–2511

    Article  Google Scholar 

  13. Zhang C S, Kai G Y, Wang Z, et al. Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal. Optics Letters, 2005, 30(18): 2372–2374

    Article  Google Scholar 

  14. Wang Z, Kai G Y, Liu Y G, et al. Coupling and decoupling of dual-core photonic bandgap fibers. Optics Letters, 2005, 30(19): 2542–2544

    Article  Google Scholar 

  15. Zhang C S, Kai G Y, Wang Z, et al. Tunable highly birefringent photonic bandgap fibers. Optics Letters, 2005, 30(20): 2703–2705

    Article  Google Scholar 

  16. Zhang C S, Kai G Y, Wang Z, et al. Simulations of effect of high-index materials on highly birefringent photonic crystal fibres. Chinese Physics Letters, 2005, 22(11): 2858–2861

    Article  Google Scholar 

  17. Zhang C S, Kai G Y, Wang Z, et al. Design of tunable bandgap guidance in high-index filled microstructure fibers. Journal of the Optical Society of America B-Optical Physics, 2006, 23(4): 782–786

    Article  Google Scholar 

  18. Wang Z, Taru T, Birks T A, et al. Coupling in dual-core photonic bandgap fibers: theory and experiment. Optics Express, 2007, 15(8): 4795–4803

    Article  Google Scholar 

  19. Wang Z, Liu Y G, Kai G Y, et al. Directional couplers operated by resonant coupling in all-solid photonic bandgap fibers. Optics Express, 2007, 15(14): 8925–8930

    Article  Google Scholar 

  20. Fang Q, Wang Z, Kai G Y, et al. Proposal for all-solid photonic bandgap fiber with improved dispersion characteristics. IEEE Photonics Technology Letters, 2007, 19(16): 1239–1241

    Article  Google Scholar 

  21. Jin L, Wang Z, Fang Q, et al. Bragg grating resonances in all-solid bandgap fibers. Optics Letters, 2007, 32(18): 2717–2719

    Article  Google Scholar 

  22. Skorobogatiy M, Saitoh K, Koshiba M. Transverse lightwave circuits in microstructured optical fibers: resonator arrays. Optics Express, 2006, 14(4): 1439–1450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Liu, Y., Kai, G. et al. Guided properties and applications of photonic bandgap fibers. Front. Optoelectron. China 1, 25–32 (2008). https://doi.org/10.1007/s12200-008-0040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-008-0040-2

Keywords

Navigation