Skip to main content
Log in

SIRT1 Inhibits High Shear Stress-Induced Apoptosis in Rat Cortical Neurons

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Sirtuin1 (SIRT1), one of NAD+-dependent protein deacetylases, is proved to be neuroprotective in aging diseases, but its effect on neuronal apoptosis has not been clarified. To investigate the role of SIRT1 in inhibiting neuronal apoptosis, SIRT1 was interfered or overexpressed in cortical neurons.

Methods

We exerted overloading laminar shear stress with 10 dyn/cm2 for 4, 8, and 12 h on neurons to cause cortical neuronal apoptosis, and the apoptosis percentage was tested by TUNEL assay. The adenovirus plasmids containing SIRT1 RNA interference or SIRT1 wild type gene were transfected into neurons before shear stress loading. SIRT1 mRNA and protein level were tested by Real-time PCR, immunofluorescence and western blots assay.

Results

SIRT1 was primarily expressed in nucleus of cortical neurons, and its mRNA level was significantly increased after 4 h stimulation. SIRT1 RNAi cortical neurons had higher TUNEL positive cells, while SIRT1 overexpression significantly decreased the percentage of died cells induced by shear stress compared to control group.

Conclusions

SIRT1 plays a neuroprotective role in shear stress induced apoptosis and could be as potential pharmacological targets against neuronal degeneration in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

SIRT1:

Sirtuin1

NAD+ :

Nicotinamide adenine dinucleotide

SIRT1-7:

Sirtuin family isoforms

Sir-2:

Silent information regulator-2

Nkx2.5:

NK2 Homeobox 5

AAA:

Abdominal aortic aneurysms

CR:

Caloric restriction

PASMC:

Pulmonary artery smooth muscle cells

PAH:

Pulmonary arterial hypertension

PDGF-BB:

Platelet-derived growth factor-BB

NRF2:

Nuclear factor (erythroid-derived 2)-like 2

DAI:

Diffuse axonal injury

FSSI:

Fluid shear stress injury

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-[2H]-tetrazolium bromide

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling

DAPI:

4,6-Diamidino-2-phenylindole dihydrochloride

BSA:

Albumin from bovine serum

PBS:

Phosphate buffered saline

RT-PCR:

Reverse transcription-polymerase chain reaction

SDS:

Sodium dodecyl sulfate

PAGE:

Polyacrylamide gel electrophoresis

RNAi:

RNA interference

PVDF:

Poly(vinylidene fluoride)

BCA:

Bicinchoninic acid

GFP:

Green fluorescent protein

eNOS:

Endothelial nitric oxide synthase

ECs:

Endothelial cells

Cx40:

Connexin40

References

  1. Anekonda, T. S. Resveratrol–a boon for treating Alzheimer’s disease? Brain Res. Rev. 52:316–326, 2006.

    Google Scholar 

  2. Bar-Kochba, E., M. T. Scimone, J. B. Estrada, and C. Franck. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury. Sci. Rep. 6:30550, 2016.

    Google Scholar 

  3. Calliari, A., N. Bobba, C. Escande, and E. N. Chini. Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner. Exp. Neurol. 251:91–100, 2014.

    Google Scholar 

  4. Chen, Z., I. C. Peng, X. Cui, Y. S. Li, S. Chien, and J. Y. Shyy. Shear stress, SIRT1, and vascular homeostasis. Proc. Natl. Acad. Sci. 107:10268–10273, 2010.

    Google Scholar 

  5. Chen, H. Z., F. Wang, P. Gap, J. F. Pei, Y. Liu, T. T. Xu, X. Tang, W. Y. Fu, J. Lu, Y. F. Yan, X. M. Wang, L. Han, Z. Q. Zhang, R. Zhang, M. H. Zou, and D. P. Liu. Age-associated sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm. Circ. Res. 119:1076–1088, 2016.

    Google Scholar 

  6. Cheng, H. L., R. Mostoslavsky, S. Saito, J. P. Manis, Y. Gu, P. Patel, R. Bronson, E. Appella, F. W. Alt, and K. F. Chua. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. 100:10794–10799, 2003.

    Google Scholar 

  7. Cheng, B. B., Z. Q. Yan, Q. P. Yao, B. R. Shen, J. Y. Wang, L. Z. Gao, Y. Q. Li, H. T. Yuan, Y. X. Qi, and Z. L. Jiang. Association of SIRT1 expression with shear stress induced endothelial progenitor cell differentiation. J. Cell Biochem. 113:3663–3671, 2012.

    Google Scholar 

  8. Chong, Z. Z., and K. Maiese. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr. Neurovasc. Res. 5:159–170, 2008.

    Google Scholar 

  9. Cullen, D. K., and M. C. LaPlaca. Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J. Neurotraum. 23:1304–1319, 2006.

    Google Scholar 

  10. Cullen, D. K., V. N. Vernekar, and M. C. LaPlaca. Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J. Neurotrauma 28:2219–2233, 2011.

    Google Scholar 

  11. Desai, M., T. Li, G. Han, and M. G. Ross. Programmed hyperphagia secondary to increased hypothalamic SIRT1. Brain Res. 1589:26–36, 2014.

    Google Scholar 

  12. Dolle, J. P., B. Morrison, R. S. Schloss, and M. L. Yarmush. An organotypic uniaxial strain model using microfluidics. Lab Chip. 13:432–442, 2013.

    Google Scholar 

  13. Gu, X., Z. Cai, M. Cai, K. Liu, D. Liu, Q. Zhang, J. Tan, and Q. Ma. AMPK/SIRT1/p38 MAPK signaling pathway regulates alcohol induced neurodegeneration by resveratrol. Mol. Med. Rep. 17:5402–5408, 2018.

    Google Scholar 

  14. Haigis, M. C., and L. P. Guarente. Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20:2913–2921, 2006.

    Google Scholar 

  15. Harrison, I. F., N. M. Powell, and D. T. Dexter. The histone deacetylase inhibitor nicotinamide exacerbates neurodegeneration in the lactacystin rat model of Parkinson’s disease. J. Neurosci. 48:136–153, 2018.

    Google Scholar 

  16. Herskovits, A. Z., and L. Guarente. SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483, 2014.

    Google Scholar 

  17. Hisahara, S., S. Chiba, H. Matsumoto, M. Tanno, H. Yagi, S. Shimoham, M. Sato, and Y. Horio. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. 105:15599–15604, 2008.

    Google Scholar 

  18. Hou, Y., S. C. S. Lautrup, Y. Wang, D. L. Croteau, E. Zavala, Y. Zhang, K. Moritoh, J. F. O’Connell, B. A. Baptiste, T. V. Stevnsner, M. P. Mattson, and V. A. Bohr. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl. Acad. Sci. 115:1876–1885, 2018.

    Google Scholar 

  19. Huang, Y., X. L. Jia, K. Bai, X. H. Gong, and Y. B. Fan. Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch. Med. Res. 41:497–505, 2010.

    Google Scholar 

  20. Jin, Q., T. Yan, X. Ge, C. Sun, X. Shi, and Q. Zhai. Cytoplasm-localized SIRT1 enhances apoptosis. J. Cell Physiol. 213:88–97, 2007.

    Google Scholar 

  21. Julien, C., C. Tremblay, V. Emond, M. Lebbadi, N. Salem, D. A. Bennett, and F. Calon. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropath. Exp. Neur. 68:48–58, 2009.

    Google Scholar 

  22. Kilinc, D., G. Gallo, and K. Barbee. Poloxamer 188 reduces axonal beading following mechanical trauma to cultured neurons. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007:5395–5398, 2007.

    Google Scholar 

  23. Kilinc, D., G. Gallo, and K. A. Barbee. Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp. Neurol. 212:422–430, 2008.

    Google Scholar 

  24. Kim, D., M. D. Nguyen, M. M. Dobbin, A. Fischer, F. Sananbenesi, J. T. Rodgers, I. Delalle, J. A. Baur, G. Sui, S. M. Armour, P. Puigserver, D. A. Sinclair, and L. H. Tsai. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 26:3169–3179, 2007.

    Google Scholar 

  25. LaPlaca, M. C., D. K. Cullen, J. J. McLoughlin, and R. S. Cargill. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J. Biomech. 38:1093–1105, 2005.

    Google Scholar 

  26. Laplaca, M. C., and G. R. Prado. Neural mechanobiology and neuronal vulnerability to traumatic loading. J. Biomech. 43:71–78, 2010.

    Google Scholar 

  27. LaPlaca, M. C., G. R. Prado, D. K. Cullen, and H. R. Irons. High rate shear insult delivered to cortical neurons produces heterogeneous membrane permeability alterations. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:2384–2387, 2006.

    Google Scholar 

  28. Li, Y., T. Yokota, V. Gama, T. Yoshida, J. A. Gomez, K. Ishikawa, H. Sasaguri, H. Y. Cohen, D. A. Sinclair, H. Mizusawa, and S. Matsuyama. Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death Differ. 14:2058–2067, 2007.

    Google Scholar 

  29. Liu, M. L., W. Song, P. Li, Y. Huang, X. H. Gong, G. Zhou, X. L. Jia, L. S. Zheng, and Y. B. Fan. Galanin protects against nerve injury after shear stress in primary cultured rat cortical neurons. PLoS ONE 8:e63473, 2013.

    Google Scholar 

  30. Liu, Y., T. T. Wang, R. Zhang, W. Y. Fu, X. Wang, F. Wang, P. Gao, Y. N. Ding, Y. Xie, D. L. Hao, H. Z. Chen, and D. P. Liu. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J. Exp. Med. 213:2473–2488, 2016.

    Google Scholar 

  31. Maneshi, M. M., F. Sachs, and S. Z. Hua. A threshold shear force for calcium influx in an astrocyte model of traumatic brain injury. J. Neurotrauma 32:1020–1029, 2015.

    Google Scholar 

  32. McBurney, M. W., X. Yang, K. Jardine, M. Hixon, K. Boekelheide, J. R. Webb, P. M. Lansdorp, and M. Lemieux. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell Biol. 23:38–54, 2003.

    Google Scholar 

  33. McDougald, D. S., K. E. Dine, A. U. Zezulin, J. Bennett, and K. S. Shindler. SIRT1 and NRF2 gene transfer mediate distinct neuroprotective effects upon retinal ganglion cell survival and function in experimental optic neuritis. Investig. Ophthalmol. Vis. Sci. 59:1212–1220, 2018.

    Google Scholar 

  34. Merksamer, P. I., Y. Liu, W. He, M. D. Hirschey, D. Chen, and E. Verdin. The sirtuins, oxidative stress and aging: an emerging link. Aging 5:144–150, 2013.

    Google Scholar 

  35. Michan, S., and D. Sinclair. Sirtuins in mammals: insights into their biological function. Biochem. J. 404:1–13, 2007.

    Google Scholar 

  36. Michishita, E., J. Y. Park, J. M. Burneskis, J. C. Barrett, and I. Horikawa. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 16:4623–4635, 2005.

    Google Scholar 

  37. Mu, W. L., Y. J. Wang, P. Xu, D. L. Hao, X. Z. Liu, T. T. Wang, F. Chen, H. Z. Chen, X. Lv, and D. P. Liu. Sox2 deacetylation by Sirt1 is involved in mouse somatic reprogramming. Stem Cells 33:2135–2147, 2015.

    Google Scholar 

  38. Munoz, A., C. L. Correa, A. Lopez-Lopez, M. A. Costa-Besada, C. Diaz-Ruiz, and J. L. Labandeira-Garcia. Physical exercise improves aging-related changes in angiotensin, IGF-1, SIRT 1, SIRT3 and VEGF in the Substantia Nigra. J. Gerontol. A Biol. Sci. Med. Sci. 73:1594–1601, 2018.

    Google Scholar 

  39. Nimmagadda, V. K., C. T. Bever, N. R. Vattikunta, S. Talat, V. Ahmad, N. R. Nagalla, D. Trisler, S. I. Judge, W. Royal, K. Chandrasekaran, J. W. Russell, and T. K. Makar. Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets. J. Immunol. 190:4595–4607, 2013.

    Google Scholar 

  40. Nimmagadda, V. K., T. K. Makar, K. Chandrasekaran, A. R. Sagi, J. Ray, J. W. Russell, and C. T. Bever. SIRT1 and NAD+ precursors: therapeutic targets in multiple sclerosis a review. J. Neuroimmunol. 304:29–34, 2017.

    Google Scholar 

  41. Ogawa, T., C. Wakai, T. Saito, A. Murayama, Y. Mimura, S. Youfu, T. Nakamachi, M. Kuwagata, K. Satoh, and S. Shioda. Distribution of the longevity gene product, SIRT1, in developing mouse organs. Congenit. Anom. 51:70–79, 2013.

    Google Scholar 

  42. Park, S., R. Mori, and I. Shimokawa. Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol. Cells 35:474–480, 2013.

    Google Scholar 

  43. Sawda, C., C. Moussa, and R. S. Turner. Resveratrol for Alzheimer’s disease. Ann. NY Acad. Sci. 1403:142–149, 2017.

    Google Scholar 

  44. Servello, D., Y. Gu, and C. Gu. A microbiomechanical system for studying varicosity formation and recovery in central neuron axons. J. Vis. Exp. 134:e57202, 2018.

    Google Scholar 

  45. Sharples, A. P., D. C. Hughes, C. S. Deane, A. Saini, C. Selman, and C. E. Stewart. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14:511–523, 2015.

    Google Scholar 

  46. Tang, X., H. Ma, L. Han, W. Zheng, Y. B. Lu, X. F. Chen, S. T. Liang, G. H. Wei, Z. Q. Zhang, H. Z. Chen, and D. P. Liu. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Sci. Rep. 6:36576, 2016.

    Google Scholar 

  47. Tanner, K. G., J. Landry, R. Sternglanz, and J. M. Denu. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product,1-O-acetyl-ADP-ribose. P. Natl. Acad. Sci. 97:14178–14182, 2000.

    Google Scholar 

  48. Tanno, M., J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282:6823–6832, 2007.

    Google Scholar 

  49. Testa, G., E. Staurenghi, S. Giannelli, S. Gargiulo, M. Guglielmotto, M. Tabaton, E. Tamagno, P. Gamba, and G. Leonarduzzi. A silver lining for 24-hydroxycholesterol in Alzheimer’s disease: The involvement of the neuroprotective enzyme sirtuin 1. Redox Biol. 17:423–431, 2018.

    Google Scholar 

  50. Tu, W., Q. Zhang, Y. Liu, L. Han, Q. Wang, P. Chen, S. Zhang, A. Wang, and X. Zhou. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol. Appl. Pharm. 347:60–69, 2018.

    Google Scholar 

  51. Velagapudi, R., O. O. Ajileye, U. Okorji, P. Jain, M. A. Aderogba, and O. A. Olajide. Agathisflavone isolated from Anacardium occidentale suppresses SIRT1-mediated neuroinflammation in BV2 microglia and neurotoxicity in APPSwe-transfected SH-SY5Y cells. Phytother. Res. 32:1957–1966, 2018.

    Google Scholar 

  52. Yao, Q. P., Y. X. Qi, P. Zhang, B. B. Cheng, Z. Q. Yan, and Z. L. Jiang. SIRT1 and Connexin40 Mediate the normal shear stress-induced inhibition of the proliferation of endothelial cells co-cultured with vascular smooth muscle cells. Cell Physiol. Biochem. 31:389–399, 2013.

    Google Scholar 

  53. Zakhary, S. M., D. Ayubcha, J. N. Dileo, R. Jose, J. R. Leheste, J. M. Horowitz, and G. Torres. Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. Anat. Rec. 293:1024–1032, 2010.

    Google Scholar 

  54. Zendedel, E., A. E. Butler, S. L. Atkin, and A. Sahebkar. Impact of curcumin on sirtuins: a review. J. Cell Biochem. 11:10291–10300, 2018.

    Google Scholar 

  55. Zhang, J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 282:34356–34364, 2007.

    Google Scholar 

  56. Zhang, Z., J. Xu, Y. Liu, T. Wang, J. Pei, L. Cheng, D. Hao, X. Zhao, H. Z. Chen, and D. P. Liu. Mouse macrophage specific knockout of SIRT1 influences macrophage polarization and promotes angiotensin II-induced abdominal aortic aneurysm formation. J. Genet. Genom. 20:25–32, 2018.

    Google Scholar 

  57. Zhou, S., M. T. Liu, Y. Y. Jia, J. J. Liu, Q. Wang, Z. Wang, Z. Tian, Y. T. Liu, H. Z. Chen, D. P. Liu, and X. F. Zeng. Regulation of cell cycle regulators by SIRT1 contributes to resveratrol-mediated prevention of pulmonary arterial hypertension. Biomed. Res. Int. 2015:762349, 2015.

    Google Scholar 

Download references

Acknowledgments

This study was supported by funds from National Natural Science Foundation of China (NSFC) Research Grant (31971238, 61871014, 51574246, 31771019, 11472032, 11120101001), and National Basic Research Program of China (973 Program, 2011CB710901), the 111 Project (B13003).

Author Contributions

PL and Y-BF conceived and designed the experiments. WS, M-LL, Z-JZ, C-QH and A-QW performed the experiments. WS, M-LL, J-WX and PL analyzed the data. M-LL contributed reagents/materials/analysis tools. M-LL, PL and Y-BF wrote the paper. All authors read and approved the final manuscript.

Data Availability

The data used to support the findings of this study are included within the article.

Conflict of interest

Wei Song, Mei-Li Liu, Zhi-Jun Zhao, Chong-Quan Huang, Jun-Wei Xu, An-Qing Wang, Ping Li and Yu-Bo Fan declare that they have no conflicts of interest.

Ethical Approval

No human studies were carried out by the authors for this article. All experiments involving the use of animals were in compliance with Provisions and General Recommendation of Chinese Experimental Animals Administration Legislation and were approved by Beijing Municipal Science & Technology Commission (Permit Number: SCXK (Beijing) 2006-0008 and SYXK (Beijing) 2006-0025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Li or Yu-Bo Fan.

Additional information

Associate Editor Jason M. Haugh oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Liu, ML., Zhao, ZJ. et al. SIRT1 Inhibits High Shear Stress-Induced Apoptosis in Rat Cortical Neurons. Cel. Mol. Bioeng. 13, 621–631 (2020). https://doi.org/10.1007/s12195-020-00623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00623-2

Keywords

Navigation