Skip to main content
Log in

The activation of P38MAPK Signaling Pathway Impedes the Delivery of the Cx43 to the Intercalated Discs During Cardiac Ischemia–Reperfusion Injury

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Ischemic heart disease is caused by coronary artery occlusion. Despite the increasing number and success of interventions for restoring coronary artery perfusion, myocardial ischemia–reperfusion (I/R) injury remains a significant cause of morbidity and mortality worldwide. Inspired by the impact of I/R on the Cx43 trafficking to the intercalated discs (ICDs), we aim to explore the potential mechanisms underlying the downregulation of Cx43 in ICDs after myocardial I/R. Gene set enrichment analysis (GSEA), Western blotting, and immunofluorescence experiments showed that Myocardial I/R activated the P38MAPK signaling pathway and promoted microtubule depolymerization. Inhibition of P38MAPK signaling pathway activation attenuated I/R-induced microtubule depolymerization. The ability of SB203580 to recover the distribution of Cx43 and electrophysiological parameters in I/R myocardium depended on microtubule stability. Our study suggests that microtubule depolymerization caused by the activation of the P38MAPK signaling pathway is an important mechanism underlying the downregulation of Cx43 in ICDs after myocardial I/R.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium; DMSO: Dimethyl sulfoxide;

ECG:

Electrocardiography; GOBP: Gene Ontology Biological Process;

GSEA:

Gene set enrichment analysis; ICDs: intercalated discs;

IHD:

Ischemic heart disease; I/R: Ischemia–reperfusion;

MAPs:

Microtubule-associated proteins;

MIRI:

Myocardial ischemic-reperfusion injury; SPF: Specific pathogen-free

References

  1. Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129:1493–501. https://doi.org/10.1161/circulationaha.113.004046.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;73:89–99. https://doi.org/10.1016/j.jacc.2018.09.086.

    Article  PubMed  Google Scholar 

  3. Yi J, Duan H, Chen K, et al. Cardiac Electrophysiological Changes and Downregulated Connexin 43 Prompts Reperfusion Arrhythmias Induced by Hypothermic Ischemia-Reperfusion Injury in Isolated Rat Hearts. J Cardiovasc Transl Res. 2022;15:1464–73. https://doi.org/10.1007/s12265-022-10256-7.

    Article  PubMed  Google Scholar 

  4. Li W, Gao H, Gao J, et al. Upregulation of MMP-9 and CaMKII prompts cardiac electrophysiological changes that predispose denervated transplanted hearts to arrhythmogenesis after prolonged cold ischemic storage. Biomed Pharmacother. 2019;112:108641. https://doi.org/10.1016/j.biopha.2019.108641.

    Article  CAS  PubMed  Google Scholar 

  5. Boengler K, Schulz R. Connexin 43 and Mitochondria in Cardiovascular Health and Disease. Exp Biol Med. 2017;982:227–46. https://doi.org/10.1007/978-3-319-55330-6_12.

    Article  CAS  Google Scholar 

  6. Leybaert L, Lampe PD, Dhein S, et al. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev. 2017;69:396–478. https://doi.org/10.1124/pr.115.012062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akar FG, Nass RD, Hahn S, et al. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol. 2007;293:H1223–30. https://doi.org/10.1152/ajpheart.00079.2007.

    Article  CAS  PubMed  Google Scholar 

  8. Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res. 2000;87:656–62. https://doi.org/10.1161/01.res.87.8.656.

    Article  CAS  PubMed  Google Scholar 

  9. Thibodeau IL, Xu J, Li Q, et al. Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation. 2010;122:236–44. https://doi.org/10.1161/circulationaha.110.961227.

    Article  CAS  PubMed  Google Scholar 

  10. Marais E, Genade S, Huisamen B, et al. Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol. 2001;33:769–78. https://doi.org/10.1006/jmcc.2001.1347.

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad F, Tomar D, Aryal ACS, et al. Nicotinamide riboside kinase-2 alleviates ischemia-induced heart failure through P38 signaling. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165609. https://doi.org/10.1016/j.bbadis.2019.165609.

    Article  CAS  PubMed  Google Scholar 

  12. Xu L, Yates CC, Lockyer P, et al. MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. J Mol Cell Cardiol. 2014;77:86–101. https://doi.org/10.1016/j.yjmcc.2014.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang M, Li Z, Zhang X, et al. Rosuvastatin attenuates atrial structural remodelling in rats with myocardial infarction through the inhibition of the p38 MAPK signalling pathway. Heart Lung Circ. 2015;24:386–94. https://doi.org/10.1016/j.hlc.2014.11.012.

    Article  PubMed  Google Scholar 

  14. Li M, Liu F, Sang M, et al. Effects of atorvastatin on p38 phosphorylation and cardiac remodeling after myocardial infarction in rats. Exp Ther Med. 2018;16:751–7. https://doi.org/10.3892/etm.2018.6201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prompunt E, Sanit J, Barrère-Lemaire S, et al. The cardioprotective effects of secretory leukocyte protease inhibitor against myocardial ischemia/reperfusion injury. Exp Ther Med. 2018;15:5231–42. https://doi.org/10.3892/etm.2018.6097.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rogers SL, Gelfand VI. Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol. 2000;12:57–62. https://doi.org/10.1016/s0955-0674(99)00057-5.

    Article  CAS  PubMed  Google Scholar 

  17. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–42. https://doi.org/10.1038/312237a0.

    Article  CAS  PubMed  Google Scholar 

  18. Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome biol. 2005;6:204. https://doi.org/10.1186/gb-2004-6-1-204.

    Article  PubMed  Google Scholar 

  19. Halpain S, Dehmelt L. The MAP1 family of microtubule-associated proteins. Genome biol. 2006;7:224. https://doi.org/10.1186/gb-2006-7-6-224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Li L, Zhang Q, et al. Phosphorylation of Microtubule- Associated Protein 4 Promotes Hypoxic Endothelial Cell Migration and Proliferation. Front Pharmacol. 2019;10:368. https://doi.org/10.3389/fphar.2019.00368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaw RM, Fay AJ, Puthenveedu MA, et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell. 2007;128:547–60. https://doi.org/10.1016/j.cell.2006.12.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smyth JW, Hong TT, Gao D, et al. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Investig. 2010;120:266–79. https://doi.org/10.1172/jci39740.

    Article  CAS  PubMed  Google Scholar 

  23. Ligon LA, Holzbaur EL. Microtubules tethered at epithelial cell junctions by dynein facilitate efficient junction assembly. Traffic. 2007;8:808–19. https://doi.org/10.1111/j.1600-0854.2007.00574.x.

    Article  CAS  PubMed  Google Scholar 

  24. Levy JR, Holzbaur EL. Special delivery: dynamic targeting via cortical capture of microtubules. Dev Cell. 2007;12:320–2. https://doi.org/10.1016/j.devcel.2007.02.012.

    Article  CAS  PubMed  Google Scholar 

  25. Hu JY, Chu ZG, Han J, et al. The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol Life Sci. 2010;67:321–33. https://doi.org/10.1007/s00018-009-0187-z.

    Article  CAS  PubMed  Google Scholar 

  26. van Rijen HV, Eckardt D, Degen J, et al. Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation. 2004;109:1048–55. https://doi.org/10.1161/01.cir.0000117402.70689.75.

    Article  PubMed  Google Scholar 

  27. Fontes MS, van Veen TA, de Bakker JM, et al. Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta Biomembr. 2012;1818:2020–9. https://doi.org/10.1016/j.bbamem.2011.07.039.

    Article  CAS  Google Scholar 

  28. Smyth JW, Vogan JM, Buch PJ, et al. Actin Cytoskeleton Rest Stops Regulate Anterograde Traffic of Connexin 43 Vesicles to the Plasma Membrane. Circ Res. 2012;110:978–89. https://doi.org/10.1161/circresaha.111.257964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Veeraraghavan R, Lin J, Hoeker GS, et al. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflügers Arch Eur J Physiol. 2015;467:2093–105. https://doi.org/10.1007/s00424-014-1675-z.

    Article  CAS  Google Scholar 

  30. Matthew Rhett J, Ongstad EL, Jourdan J, et al. Cx43 Associates with Nav1.5 in the Cardiomyocyte Perinexus. J Membr Biol. 2012;245:411–22. https://doi.org/10.1007/s00232-012-9465-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nasilli G, Lin X, Perez-Hernandez M et al Targeting microtubule dynamics improves cardiac sodium channel function in arrhythmogenic cardiomyopathy. European Heart Journal. (2023) 44: https://doi.org/10.1093/eurheartj/ehad655.3060

  32. Smyth JW, Shaw RM. Autoregulation of connexin43 gap junction formation by internally translated isoforms. Cell Rep. 2013;5:611–8. https://doi.org/10.1016/j.celrep.2013.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basheer WA, Xiao S, Epifantseva I, et al. GJA1-20k Arranges Actin to Guide Cx43 Delivery to Cardiac Intercalated Discs. Circ Res. 2017;121:1069–80. https://doi.org/10.1161/circresaha.117.311955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Basheer WA, Fu Y, Shimura D et al Stress response protein GJA1–20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI insight. (2018) 3: https://doi.org/10.1172/jci.insight.121900

  35. Xiao S, Shimura D, Baum R, et al. Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias. J Clin Invest. 2020;130:4858–70. https://doi.org/10.1172/jci134682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen L, Yuan J, Li H, et al. Trans-cinnamaldehyde attenuates renal ischemia/reperfusion injury through suppressing inflammation via JNK/p38 MAPK signaling pathway. Int Immunopharmacol. 2023;118:110088. https://doi.org/10.1016/j.intimp.2023.110088.

    Article  CAS  PubMed  Google Scholar 

  37. Liu XM, Chen QH, Hu Q, et al. Dexmedetomidine protects intestinal ischemia-reperfusion injury via inhibiting p38 MAPK cascades. Exp Mol Pathol. 2020;115:104444. https://doi.org/10.1016/j.yexmp.2020.104444.

    Article  CAS  PubMed  Google Scholar 

  38. Wang T, Liu C, Pan LH, et al. Inhibition of p38 MAPK Mitigates Lung Ischemia Reperfusion Injury by Reducing Blood-Air Barrier Hyperpermeability. Front Pharmacol. 2020;11:569251. https://doi.org/10.3389/fphar.2020.569251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng JJ, Shi HQ, Ren FF, et al. Notoginsenoside R1 protects against myocardial ischemia/reperfusion injury in mice via suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin. 2023. https://doi.org/10.1038/s41401-023-01057-y.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gudimchuk NB, McIntosh JR. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. 2021;22:777–95. https://doi.org/10.1038/s41580-021-00399-x.

    Article  CAS  PubMed  Google Scholar 

  41. Etienne-Manneville S. From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol. 2010;22:104–11. https://doi.org/10.1016/j.ceb.2009.11.008.

    Article  CAS  PubMed  Google Scholar 

  42. Wloga D, Joachimiak E, Fabczak H Tubulin Post-Translational Modifications and Microtubule Dynamics. Int J Molecular Scie (2017) 18: https://doi.org/10.3390/ijms18102207

  43. Kang J, Kang N, Lovatt D, et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci: Official J Soc Neurosci. 2008;28:4702–11. https://doi.org/10.1523/jneurosci.5048-07.2008.

    Article  CAS  Google Scholar 

  44. Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal. 2021;86:110070. https://doi.org/10.1016/j.cellsig.2021.110070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xue J, Yan X, Yang Y, et al. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol. 2019;114:40. https://doi.org/10.1007/s00395-019-0748-8.

    Article  CAS  PubMed  Google Scholar 

  46. Morel S, Christoffersen C, Axelsen LN, et al. Sphingosine-1-phosphate reduces ischaemia-reperfusion injury by phosphorylating the gap junction protein Connexin43. Cardiovasc Res. 2016;109:385–96. https://doi.org/10.1093/cvr/cvw004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim B, Breton S. The MAPK/ERK signaling pathway regulates the expression and localization of Cx43 in mouse proximal epididymis†. Biol Reprod. 2022;106:919–27. https://doi.org/10.1093/biolre/ioac034.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhong C, Zhao H, Xie X, et al. Protein Kinase C-Mediated Hyperphosphorylation and Lateralization of Connexin 43 Are Involved in Autoimmune Myocarditis-Induced Prolongation of QRS Complex. Front Physiol. 2022;13:815301. https://doi.org/10.3389/fphys.2022.815301.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Figdraw (www.figdraw.com) for their help in creating the schematic representation of the experimental protocol.

Funding

This study was supported by grants from the Science and Technology Fund Project of the Guizhou Provincial Health Commission (gzwkj2021-270, Gzwkj2022-131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gao.

Ethics declarations

Ethics approval

No human studies were carried out by the authors for this article. The protocol of the experiments was approved by the Ethics Committee of Guizhou Medical University (approval number: 2303066). The animal care and use protocol was adhered to the Chinese National Laboratory Animal-Guideline for Ethical Review of Animal Welfare (GB/T 35892–2018).

Conflict of Interest

The authors declare that they have no conflict of interest.

Human subjects/informed consent statement

No human studies were carried out by the authors for this article.

Additional information

Communicated by Associate Editor Geert Boink oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Bai, X., Yi, J. et al. The activation of P38MAPK Signaling Pathway Impedes the Delivery of the Cx43 to the Intercalated Discs During Cardiac Ischemia–Reperfusion Injury. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-024-10515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-024-10515-9

Keywords

Navigation